

CAUTION

Before Servicing the unit, read the safety precautions in General SVC manual. Only for authorized service personnel.

TABLE OF CONTENTS

Safety Precautions	3
Part 1 General Information	8
Model Names	9
External Appearance	11
Combination of Outdoor Units	13
Nomenclature	14
Part 2 Outdoor Units	16
Part 3 HR Units	50
Part 4 PCB Setting and Test Run	59
Part 5 Trouble shooting guide	77

Safety Precautions

To prevent injury to the user or other people and property damage, the following instructions must be followed.

■ Incorrect operation due to ignoring instruction will cause harm or damage. The seriousness is classified by the following indications.

AWARNING This symbol indicates the possibility of death or serious injury.

ACAUTION

This symbol indicates the possibility of injury or damage to properties only.

■ Meanings of symbols used in this manual are as shown below.

	Be sure not to do.
•	Be sure to follow the instruction.

Installation

Have all electric work done by a licensed electrician according to "Electric Facility **Engineering Standard** and "Interior Wire Regulations" and the instructions given in this manual and always use a special circuit.

· If the power source capacity is inadequate or electric work is performed improperly, electric shock or fire may result.

Always ground the product.

There is risk of fire or electric shock.

For re-installation of the installed product, always contact a dealer or an Authorized Service Center.

 There is risk of fire, electric shock, explosion, or injury.

Ask the dealer or an authorized technician to install the air conditioner.

 Improper installation by the user may result in water leakage, electric shock, or fire.

Always intstall a dedicated circuit and breaker.

 Improper wiring or installation may cause fire or electric shock.

Do not install, remove, or re-install the unit by vourself (customer).

 There is risk of fire, electric shock, explosion, or injury.

Do not store or use flammable gas or combustibles near the air conditioner.

• There is risk of fire or failure of product.

Prepare for strong wind or earthquake and install the unit at the specified place.

 Improper installation may cause the unit to topple and result in injury.

When installing and moving the air conditioner to another site, do not charge it with a different refrigerant from the refrigerant specified on the unit.

 If a different refrigerant or air is mixed with the original refrigerant, the refrigerant cycle may malfunction and the unit may be damaged.

Ventilate before operating air conditioner when gas leaked out.

It may cause explosion, fire, and burn.

If the air conditioner is installed in a small room, measures must be taken to prevent the refrigerant concentration from exceeding the safety limit when the refrigerant leaks.

 Consult the dealer regarding the appropriate measures to prevent the safety limit from being exceeded. Should the refrigerant leak and cause the safety limit to be exceeded, harzards due to lack of oxygen in the room could result

Use the correctly rated breaker or fuse.

There is risk of fire or electric shock.

Do not install the product on a defective installation stand.

 It may cause injury, accident, or damage to the product.

Do not reconstruct to change the settings of the protection devices.

 If the pressure switch, thermal switch, or other protection device is shorted and operated forcibly, or parts other than those specified by LGE are used, fire or explosion may result.

Securely install the cover of control box and the panel.

 If the cover and panel are not installed securely, dust or water may enter the outdoor unit and fire or electric shock may result.

Use a vacuum pump or inert(nitrogen) gas when doing leakage test or air purge. Do not compress air or Oxygen and do not use flammable gas es. Otherwise, it may cause fire or explosion.

There is the risk of death, injury, fire or explosion.

■ Operation -

Do not damage or use an unspecified power cord.

 There is risk of fire, electric shock, explosion, or injury.

Be cautious that water could not enter the product.

• There is risk of fire, electric shock, or product damage.

When the product is soaked (flooded or submerged), contact an Authorized Service Center.

• There is risk of fire or electric shock.

Take care to ensure that nobody could step on or fall onto the outdoor unit.

 This could result in personal injury and product damage.

Use a dedicated outlet for this appliance.

There is risk of fire or electrical shock.

Do not touch the power switch with wet hands.

 There is risk of fire, electric shock, explosion, or injury.

Be cautious not to touch the sharp edges when installing.

It may cause injury.

Do not open the inlet grille of the product during operation. (Do not touch the electrostatic filter, if the unit is so equipped.)

 There is risk of physical injury, electric shock, or product failure.

ACAUTION

Installation -

Always check for gas (refrigerant) leakage after installation or repair of product.

 Low refrigerant levels may cause failure of product.

Keep level even when installing the product.

· To avoid vibration or water leakage.

Do not install the product where the noise or hot air from the outdoor unit could damage the neighborhoods.

It may cause a problem for your neighbors.

Do not install the unit where combustible gas may leak.

 If the gas leaks and accumulates around the unit, an explosion may result. Use power cables of sufficient current carrying capacity and rating.

 Cables that are too small may leak, generate heat, and cause a fire.

Keep the unit away from children. The heat exchanger is very sharp.

 It can cause the injury, such as cutting the finger.
 Also the damaged fin may result in degradation of capacity. Do not use the product for special purposes, such as preserving foods, works of art, etc. It is a consumer air conditioner, not a precision refrigeration system.

There is risk of damage or loss of property.

When installting the unit in a hospital, communication station, or similar place, provide sufficient protection against noise.

 The inverter equipment, private power generator, high-frequency medical equipment, or radio communication equipment may cause the air conditioner to operate erroneously, or fail to operate. On the other hand, the air conditioner may affect such equipment by creating noise that disturbs medical treatment or image broadcasting.

Do not install the product where it is exposed to sea wind (salt spray) directly.

• It may cause corrosion on the product. Corrosion, particularly on the condenser and evaporator fins, could cause product malfunction or inefficient operation.

■ Operation -

Do not use the air conditioner in special environments.

 Oil, steam, sulfuric smoke, etc. can significantly reduce the performance of the air conditioner or damage its parts.

Make the connections securely so that the outside force of the cable may not be applied to the terminals.

Inadequate connection and fastening may generate heat and cause a fire.

Do not block the inlet or outlet.

• It may cause failure of appliance or accident.

Be sure the installation area does not deteriorate with age.

• If the base collapses, the air conditioner could fall with it, causing property damage, product failure, or personal injury.

Install and insulate the drain hose to ensure that water is drained away properly based on the installation manual.

A bad connection may cause water leakage.

Be very careful about product transportation.

- Only one person should not carry the product if it weighs more than 20 kg.
- Some products use PP bands for packaging. Do not use any PP bands for a means of transportation. It is dangerous.
- Do not touch the heat exchanger fins. Doing so may cut your fingers.
- When transporting the outdoor unit, suspending it at the specified positions on the unit base. Also support the outdoor unit at four points so that it cannot slip sideways.

Safely dispose of the packing materials.

- Packing materials, such as nails and other metal or wooden parts, may cause stabs or other injuries.
- Tear apart and throw away plastic packaging bags so that children may not play with them. If children play with a plastic bag which was not torn apart, they face the risk of suffocation.

Do not touch any of the refrigerant piping during and after operation.

It can cause a burn or frostbite.

Do not directly turn off the main power switch after stopping operation.

 Wait at least 5 minutes before turning off the main power switch. Otherwise it may result in water leakage or other problems.

Use a firm stool or ladder when cleaning or maintaining the air conditioner.

Be careful and avoid personal injury.

Turn on the power at least 6 hours before starting operation.

 Starting operation immediately after turning on the main power switch can result in severe damage to internal parts. Keep the power switch turned on during the operational season.

Do not operate the air conditioner with the panels or guards removed.

 Rotating, hot, or high-voltage parts can cause injuries.

Auto-addressing should be done in condition of connecting the power of all indoor and outdoour units. Auto-addressing should also be done in case of changing the indoor unit PCB.

Do not insert hands or other objects through the air inlet or outlet while the air conditioner is plugged in.

 There are sharp and moving parts that could cause personal injury.

Part 1 General Information

1. Model Names	g
1.1 Indoor Unit	
1.2 Outdoor Unit	
1.3 HR Unit	g
2. External Appearance	11
2.1 Indoor Unit	
2.2 Outdoor Unit	12
3. Combination of Outdoor Units	13
4. Nomenclature	14
4.1 Indoor Unit	14
4.2 Outdoor Unit	14
4.3 HR Unit	15

1. Model Names

1.1 Indoor Unit

		01 .							Capac	ity(Btu/	h(kW))						
Cate	egory	Chassis Name	5k (1.6)	7k (2.2)	9k (2.8)	12k (3.6)	15k (4.5)	18k (5.6)	21k (6.2)	24k (7.1)	28k (8.2)	36k (10.6)	42k (12.3)	48k (14.1)	54k (15.8)	76k (22.4)	96k (28.0)
	General	S5						0		0							
Wall Mounted	Libono	SB		0	0	0	0										
Mounted	Libero	SC						0		0							
	N 45	SE		0	0	0	0										
ART COOL	Mirror	S8						0		0							
	Gallery	SF		0	0	0											
	4 10/	TU		0	0	0											
	1 Way	TT						0		0							
	2 Way	TL						0		0							
Ceiling		TR	0	0	0	0											
Cassette		TQ					0	0									
	4 Way	TP								0	0						
		TN										0					
		TM											0	0			
		ВН		0	0	0	0	0		0							
11: 1 0:	Lliab Ctatio	BG									0	0	0				
	High Static	BR												0	0		
Ceiling		B8														0	0
Concealed		L1	0	0	0												
Duct	Low Static	L2				0	0	0									
		L3							0	0							
	Built In	В3		0	0	0	0										
	(Low Static)	B4						0		0							
Ceiling & Flo	or	VE			0	0											
		VJ						0		0							
Ceiling Susp	ended	VK										0					
		VL												0			
	Mish O	CE		0	0	0	0										
Floor	With Case	CF						0		0							
Standing	Without	CE		0	0	0	0										
	Case	CF						0		0							
Console		QA		0	0	0	0										
Freely Atribut	alea I ludit	BR												0			
Fresh Air Inta	ake Unit	B8														0	0

 $[\]mbox{\%}$ In matters of combination with Outdoor unit system, refer the PDB of that outdoor units.

^{★ *}ART COOL- SE/S8(* R:Mirror, V:Silver), SF(* E:Red, V:Silver, G:Gold , 1: Kiss (Photo changeable))

^{*}Wall Mounted- A: Basic, L:Plasma, *Ceiling Cassette- A: Basic, C:Plasma

1.2 Outdoor Unit

Power Supply	8HP	10HP	12HP	14HP	16HP	18HP	20HP	22HP
380 V3N~ 60Hz 380-415 V3N~ 50Hz	080LTE4	100LTE4	120LTE4	140LTE4	160LTE4	180LTE4	200LTE4	220LTE4
Power Supply	24HP	26HP	28HP	30HP	32HP	34HP	36HP	38HP
380 V3N~ 60Hz 380-415 V3N~ 50Hz	240LTE4	260LTE4	280LTE4	300LTE4	320LTE4	340LTE4	360LTE4	380LTE4
Power Supply	40HP	42HP	44HP	46HP	48HP	50HP	52HP	54HP
rowei Suppiy	40111	42111	44111	40116	4011	JULIE	JZIIF	34111
380 V3N~ 60Hz 380-415 V3N~ 50Hz	400LTE4	420LTE4	440LTE4	460LTE4	480LTE4	500LTE4	520LTE4	540LTE4
Power Supply	56HP	58HP	60HP	62HP	64HP	66HP	68HP	70HP
380 V3N~ 60Hz 380-415 V3N~ 50Hz	560LTE4	580LTE4	600LTE4	620LTE4	640LTE4	660LTE4	680LTE4	700LTE4
						1		
Power Supply	72HP	74HP	76HP	78HP	80HP			
380 V3N~ 60Hz 380-415 V3N~ 50Hz	720LTE4	740LTE4	760LTE4	780LTE4	800LTE4			
		•						
Heat Recovery		ARUB						

1.3 HR Unit

Power Supply	2 branches	3 branches	4 branches
1Ø, 220 - 240V, 60Hz	PRHR021	PRHR031	PRHR041

2. External Appearance

2.1 Indoor Unit

Ceiling Cassette- 1Way

ARNU07GTU*2 ARNU09GTU*2 ARNU12GTU*2

ARNU18GTT*2

ARNU24GTT*2 * A:Basic, C:Plasma

Ceiling Concealed Duct - High Static

ARNU07GBHA2 ARNU36GBGA2 ARNU09GBHA2 ARNU42GBGA2 ARNU12GBHA2 ARNU48GBRA2 ARNU15GBHA2 ARNU54GBRA2 ARNU18GBHA2 ARNU76GB8A2 ARNU24GBHA2 ARNU96GB8A2 ARNU28GBGA2

Ceiling Cassette- 4Way

ARNU24GTP*2 ARNU05GTR*2 ARNU28GTP*2 ARNU07GTR*2 ARNU09GTR*2 ARNU36GTN*2 ARNU12GTR*2 ARNU42GTM*2 ARNU15GTQ*2 ARNU48GTM*2 ARNU18GTQ*2 * A:Basic, C:Plasma

Wall mounted (Libero)

ARNU07GSB*2 ARNU15GSB*2 ARNU18GSC*2 ARNU09GSB*2 ARNU12GSB*2 ARNU24GSC*2

* A:Basic, L:Plasma

Ceiling Concealed Duct - Low Static

ARNU05GL1G2 ARNU15GL2G2 ARNU07GL1G2 ARNU18GI 2G2 ARNU09GL1G2 ARNU21GL3G2 ARNU12GL2G2 ARNU24GL3G2

ART COOL Gallery

ARNU07GSF*2 ARNU09GSF*2 ARNU12GSF*2

> * E:Red V:Silver G:Gold 1: Kiss (Photo changeable)

Ceiling Concealed Duct – Built-in (Low Static)

ARNU07GB3G2 ARNU15GB3G2 ARNU09GB3G2 ARNU18GB4G2 ARNU12GB3G2 ARNU24GB4G2

Floor Standing With case

ARNU07GCFA2 ARNU15GCEA2 ARNU09GCEA2 ARNU18GCFA2 ARNU12GCEA2 ARNU24GCFA2

ARNU07GCEU2 ARNU15GCEU2 ARNU09GCEU2 ARNU18GCFU2 ARNU12GCEU2 ARNU24GCFU2

ART COOL Mirror ARNU07GSE*2 ARNU15GSE*2

ARNU09GSE*2 ARNU18GS8*2 ARNU12GSE*2 ARNU24GS8*2

* R:Mirror, V:Silver

Console

ARNU07GQAA2 ARNU09GQAA2 ARNU12GQAA2 ARNU15GQAA2

Ceiling & Floor

ARNU09GVEA2 ARNU12GVEA2

Ceiling Suspended

URNU18GVJA2 URNU36GVKA2 URNU24GVJA2 URNU48GVLA2

Fresh Air Intake Unit

ARNU48GBRZ2 ARNU76GB8Z2 ARNU96GB8Z2

Ceiling Cassette - 2Way

ARNU18GTL*2 ARNU24GTL*2

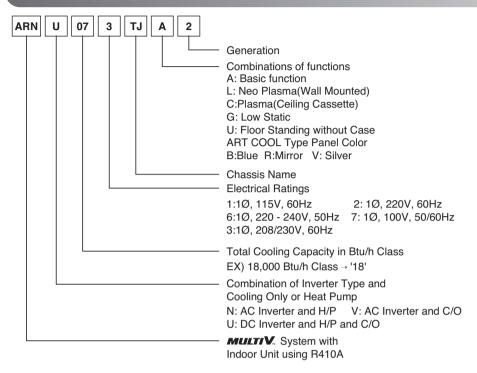
* A:Basic, C:Plasma

In matters of combination with Outdoor unit system, refer the PDB of that outdoor units.

2.2 Outdoor Unit

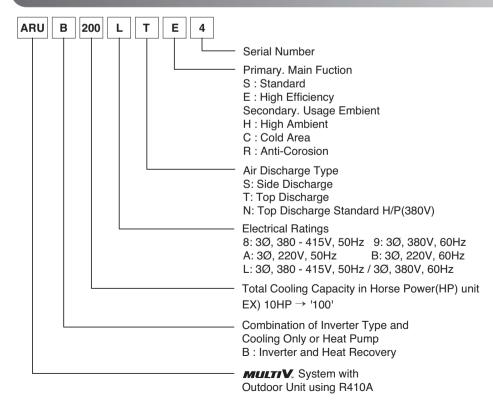
2.2.1 Heat Recovery

CHASSIS	Model Name	Model
UX2	ARUB080LTE4 ARUB100LTE4 ARUB120LTE4	
UX3	ARUB140LTE4 ARUB160LTE4 ARUB180LTE4 ARUB200LTE4	——————————————————————————————————————
UX2 UX2	ARUB220LTE4 ARUB240LTE4	
UX3 UX2	ARUB260LTE4 ARUB280LTE4 ARUB300LTE4 ARUB320LTE4	● U.S
UX3 UX3	ARUB360LTE4 ARUB380LTE4 ARUB340LTE4 ARUB400LTE4	• 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
UX3 UX3 UX2	ARUB420LTE4 ARUB440LTE4 ARUB460LTE4 ARUB480LTE4 ARUB500LTE4 ARUB520LTE4	- 1013
UX3 UX3 UX3	ARUB540LTE4 ARUB560LTE4 ARUB580LTE4 ARUB600LTE4	● 102
UX3 UX3 UX3 UX3	ARUB620LTE4 ARUB720LTE4 ARUB640LTE4 ARUB740LTE4 ARUB660LTE4 ARUB760LTE4 ARUB680LTE4 ARUB780LTE4 ARUB700LTE4 ARUB800LTE4	• ta

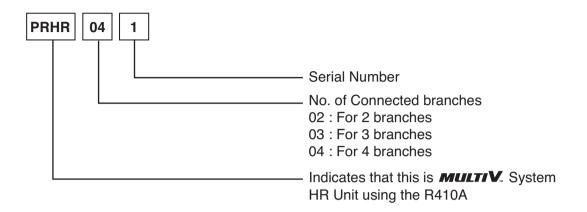

3. Combination of Outdoor Units

3.1 Heat Recovery

	NIl				Module(HP)			
Model Name	Number of Units	8	10	12	14	16	18	20
ARUB080LTE4	1	1						
ARUB100LTE4	1		1					
ARUB120LTE4	1			1				
ARUB140LTE4	1				1			
ARUB160LTE4	1					1		
ARUB180LTE4	1						1	
ARUB200LTE4	1							1
ARUB220LTE4	2		1	1				
ARUB240LTE4	2			2				
ARUB260LTE4	2			1	1			
ARUB280LTE4	2			1		1		
ARUB300LTE4	2			1			1	
ARUB320LTE4	2			1				1
ARUB340LTE4	2				1			1
ARUB360LTE4	2					1		1
ARUB380LTE4	2						1	1
ARUB400LTE4	2							2
ARUB420LTE4	3		1		1		1	
ARUB440LTE4	3		1		1			1
ARUB460LTE4	3		1			1		1
ARUB480LTE4	3		1				1	1
ARUB500LTE4	3		1					2
ARUB520LTE4	3			1				2
ARUB540LTE4	3				1			2
ARUB560LTE4	3					1		2
ARUB580LTE4	3						1	2
ARUB600LTE4	3							3
ARUB620LTE4	4				2	1	1	
ARUB640LTE4	4				2		2	
ARUB660LTE4	4				1	1	2	
ARUB680LTE4	4				2			2
ARUB700LTE4	4				1	1		2
ARUB720LTE4	4				1		1	2
ARUB740LTE4	4					1	1	2
ARUB760LTE4	4						2	2
ARUB780LTE4	4						1	3
ARUB800LTE4	4							4


4. Nomenclature

4.1 Indoor Unit



* Heat recovery ventilator refer to the DX-Coil manual

4.2 Outdoor Unit

4.3 HR Unit

Part 2 Outdoor Units

ARUB Series

Function1	18
I MIIOUOII	

Function

1. Basic control	19
1.1 Normal operation	19
1.2 Compressor control	19
1.3 Master and slave unit's EEV control	20
2. Special control	21
2.1 Oil return control	21
2.2 Defrost control	23
2.3 Partial Defrost	24
2.4 Stop operation	25
2.5 Oil equalizing control	25
3. Protection control	26
3.1 Pressure protection control	26
3.2 Discharge temperature control	27
3.3 Inverter protection control	27
3.4 Phase detection	28
3.5 Pressure switch	28
4. Other control	29
4.1 Initial setup	29
4.2 Emergency operation	32
4.3 Refrigerant Auto Charging	34
4.4 Pump Out	35
4.5 Refrigerant amount automatic judgment	36
4.6 ITR(Cooling)	37
4.7 ITR(Heating)	38
4.8 FDD Code	40
4.9 Multi V ITR result report	41
4.10 Pump Down	42
4.11 Pump Out	43
4.12 Auto Back Up Function_Inverter compressor	45
4.13 Night Low Noise Function	46
4.14 Vacuum Mode	47
4.15 Static pressure compensation mode	47
4.16 Cool & Heat selector	48
	_

1. Basic control

1.1 Normal operation

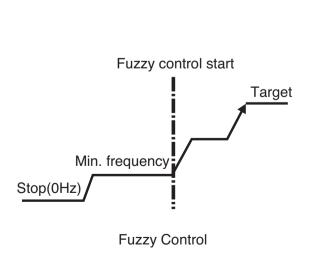
Actuator	Cooling operation	Heating operation	Stop state
Compressor	Fuzzy control	Fuzzy control	stop
Fan	Fuzzy control	Fuzzy control	stop
Main EEV	Upper : Min. pulse *Low : Full open	Fuzzy control	Min. pulse
Subcooling EEV	Fuzzy control	Normal : Vapor injection Avoiding control of high discharge temperature	Min. pulse
Indoor Unit EEV	Superheat fuzzy control	Subcooling fuzzy control	Min. pulse

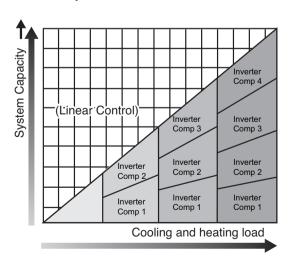
Note: Heating operation is not functional at an outdoor air temperature of 27°C or more.

Cooling operation is not functional at an outdoor air temperature of 2°C or less with indoor unit combination of 10% or less

1.2 Compressor control

Fuzzy control : Maintain evaporating temperature(Te) to be constant on cooling mode and condensing temperature(Tc) on heating mode by Fuzzy control to ensure the stable system performance. (Tc:47 \sim 51°C, Te:2 \sim 5°C)


(1) Cooling mode


Te can be set various step at installation mode.

(2) Heating mode

Tc can be set various step at installation mode.

Note: By setting dip switch, Te and Tc are decided simultaneously.

Inverter linear control as cooling and heating load increasing

1.3 Master and slave Unit's EEV control

(1) Main EEV control

Main EEV operates with fuzzy control rules to keep the degree of super Heat(Superheat) (about 3°C)at the evaporator outlet stable during heating mode

The degree of Superheat = Tsuction - Tevaporation

Tsuction: temperature at suction pipe sensor(°C)

Tevaporation: evaporation temperature equivalent to low pressure(°C)

(2) Subcooling EEV control(about 15°C)

Subcooling EEV works with fuzzy rules to keep the degree of Subcool at the outlet of subcooler during cooling mode

The degree of Subcool = Tcondensation - Tliquid

Tliquid: temperature at outlet of subcooler(°C)

Tcondensation: condensation temperature equivalent to high pressure(°C)

- (3) Avoiding excessive high discharge temperature: when main EEV opens some given opening (R410A: 800 pls) and discharge temperature is above 85°C in heating operation, subcooling EEV may control the "subcooling out temperature-evaporating temperature" to be some given difference.
- (4) Vapor injection flow-rate control at heating mode

The degree of Superheat (VI_SH) = Subcooler out(°C) – Subcooler in(°C)

- Td \leq 80°C : VI SH = 3°C

 $-80^{\circ}\text{C}<\text{Td} \le 90^{\circ}\text{C}: VI_SH = -2^{*}\text{Td}/10 + 19$

- 90°C<Td : VI SH = 1°C

2. Special control

2.1 Oil return control

2.1.1 Oil return control on cooling mode

Oil return operation recovers Oil level in compressor by collecting oil accumulated in pipe. Each cycle component operates as shown on the below table during oil return operation.

Outdoor Unit

Component	Starting	Running	Ending	
Inv Compressor	30Hz	Setting Value	30Hz	
FAN	Normal control	Normal control	Normal control	
Main EEV	Upper : Min. pulse Low : Max. pulse	Upper : Min. pulse Low : Max. pulse	Upper : Normal control Low : Normal control	
Subcooling EEV	Min. pulse	20 pulse	80 pulse	
4way valve	OFF	OFF	OFF	

Indoor Unit

Component	Starting	Running	Ending
Fan	Normal control	OFF	Normal control
Thermo on unit EEV	Normal control	Normal control	Normal control
Thermo off unit EEV	40 pulse	400 pulse	40 pulse
Oil return signal	OFF	ON	OFF

- Oil return operation time : 3 min for running step
- Starting condition : When low oil level which is measured by oil level sensor is kept continuously then oil return operation will be start.
- Oil return process ends if compressor protection control starts

2.1.2 Oil return control on heating mode

Outdoor Unit

Component	Starting	Running	Ending
Inv Compressor	30Hz	Setting Value	40Hz
FAN	Normal control	Normal control	Normal control
Main EEV	Upper : Min. pulse Low : Max. pulse	Upper : Min. pulse Low : Max. pulse	Upper : Normal control Low : Normal control
Subcooling EEV	Min. pulse	20 pulse	80 pulse
4way valve	ON	OFF	ON

Indoor Unit

Component	Starting	Running	Ending
Fan	Normal control	OFF	Normal control
Thermo on unit EEV	Normal control	400~800 pulse	Normal control
Thermo off unit EEV	80~130 pulse	400~800 pulse	80~130 pulse

- Oil return operation time: 3 min for running step
- Starting condition:same as cooling mode
- Oil return process ends if compressor protection control starts

2.2 Defrost

Defrost operation eliminates ice accumulated on heat exchanger, recovering performance of heat exchanger. Each cycle component operates as following table during defrost operation.

Outdoor Unit

Component	Starting	Running	Ending
Inv Compressor	30Hz	Setting Value	40Hz
FAN	Stop	High pressure control	Normal control
Main EEV	Normal control	Max. pulse	Normal control
Subcooling EEV	Normal control	Min. pulse	Normal control
4way valve	On → OFF	OFF	ON

Indoor Unit

Component	Starting	Running	Ending
Fan	OFF	OFF	OFF
Thermo on unit EEV	Normal control	400~800 pulse	Normal control

■ Ending condition

- 1) All heat exchanger pipe temperature are above setting temperature for 30 sec.
- 2) The running time of defrost operation is over 30% of the total heating time
- 3) If compressor protection control starts by high discharge temperature of compressor etc.

2.3 Partial Defrost (ARUB***LTE4 ONLY)

Partial defrost operation divides heat exchanger with upper and parts that gives a chance to make the defrost separately in order to proceed the heating performance continuously. Each cycle component operates as following table during partial defrost operation.

Outdoor Unit

Component	Starting	Running	Ending
Inv Compressor	Normal control	Setting Value	Normal control
FAN	Normal control	Low pressure control	Normal control
Main EEV	Normal control	Normal control	Normal control
Subcooling EEV	Normal control	Normal control	Normal control
4way valve	ON	ON	ON

Indoor Unit

Component	Starting	Running	Ending
Fan	ON(Setting)	ON(Low)	ON(Setting)
Thermo on unit EEV	Normal control	Normal control	Normal control

■ Ending condition

- 1) Upper defrost ending condition over setting temperature.
- 2) Low defrost ending condition over setting temperature.
- 3) Max. 12 minutes

2.4 Stopping operation

2.4.1 Stopping operation on cooling mode

Component	Operation	Note
Inv Compressor	OFF	-
FAN	Stop	-
Main EEV	32 pulse	-
Subcooling EEV	16 pulse	Stop(Min. pulse)
4way valve	OFF	-

2.4.2 Stopping operation on heating mode

Component	Operation	Note
Inv Compressor	OFF	-
FAN	Stop	-
Main EEV	32 pulse	-
Subcooling EEV	16 pulse	Stop(Min. pulse)
4way valve	ON	OFF over 30°C air temperature

2.5 Oil equalizing control

This function prevent oil unbalance between inverter. compressor.

When oil level which is measured by oil level sensor is kept differently between each compressor then oil equalizing EEV will be open during 5 minutes.

3. Protection control

3.1 Pressure protection control

3.1.1 Pressure control on cooling mode

■ High pressure control

Pressure Range	Compressor	Fan
P _d ≥ 4000 kPa 3775 kPa 3578 kPa	Stop	Stop
P _d > 3775 kPa	-15Hz/10sec.	+100RPM/10sec.
P _d ≥ 3513 kPa	Frequency holding	+100RPM/10sec.
P _d ≥ 3480 kPa	+2 Hz or less/10sec.	+100RPM/10sec.
Pd < 3480 kPa	Normal control	

■ Low pressure control

Pressure Range	Compressor	Fan
Ps ≤ 98kPa, 1 minute later operation	Stop	Stop
Ps ≤ 124kPa, 1 minute before operation	-15Hz/10sec.	-100RPM/ 10sec.

^{*} Frequency holding: frequency (or RPM) is not increasing (can decrease)

3.1.2 Pressure control on heating mode

■ High pressure control

Pressure Range	Compressor	Fan
P _d ≥ 4003 kPa	Stop	Stop
Pd > 3415 kPa	-15Hz/10sec.	-50RPM/10sec.

■ Low pressure control

Pressure Range	Compressor	Fan		
Ps ≤ 98 kPa	Stop	Stop		
Ps ≤ 124 kPa	-15Hz/10sec.	+100RPM/10s		
Ps ≤ 137 kPa	Frequency holding	+100RPM/10s		
Ps ≤ 190 kPa	+2 Hz or less/10sec.	+100RPM/10s		
P _s ≥ 190 kPa	Normal control	Normal control		

 $[\]ensuremath{\Re}$ Frequency holding : frequency (or RPM) is not increasing (can decrease).

3.2 Discharge temperature control

■ Outdoor unit control

Temperature range	Compressor	Sub cooling EEV	IDU EEV		
Tdis >110°C OFF		SC,SH decrease control	SH decrease control		
Tdis >108°C	-5Hz/10sec.	SC,SH decrease control	SH decrease control		
Tdis≥ 105°C	Frequency holding	SC,SH decrease control	SH decrease control		
Tdis≤ 100°C	Normal control	SC,SH decrease control	SH decrease control		
Tdis >100°C	Normal control	SC,SH decrease control	SH decrease control		

SC: Sub Cooling, SH: Super Heating

3.3 Inverter protection control

Cooling mode

	Normal C	Operation	Frequen	cy Down	System Stop		
	4.8HP	6.8HP	4.8HP	6.8HP	4.8HP	6.8HP	
AC Input Current	19A or less	28A or less	19A or more	28A or more	24A or more	32A or more	
Compressor Current	Compressor Current 24A or less 35A		24A or more	35A or more	30A or more	41A or more	

Heating mode

	Normal Operation 4.8HP 6.8HP		Frequen	cy Down	System Stop		
			1.8HP 6.8HP 4.8HP 6.8HP		4.8HP 6.8HP		
AC Input Current	Input Current 19A or less 28A or less		19A or more	28A or more	24A or more	32A or more	
Compressor Current 24A or less 35A or		35A or less	24A or more	35A or more	30A or more	41A or more	

* AC input current is input current of inverter compressor except constant current (current pass through noise filter)

3.4 Phase detection

■ If the power lines are connected incorrectly the product will not work and displays error like below. Case1) 1 or more phase lines are missing (disconnected)

Case 2) Neutral (N) line connected wrongly to any phase line

Case		Error No.			
	R	S	Т	N	EHOLINO.
	X				50
Missed Phase		X			30
			X		5
				X	25
Reversed Phase	N				50
		N			30
			N		5
				N	No error

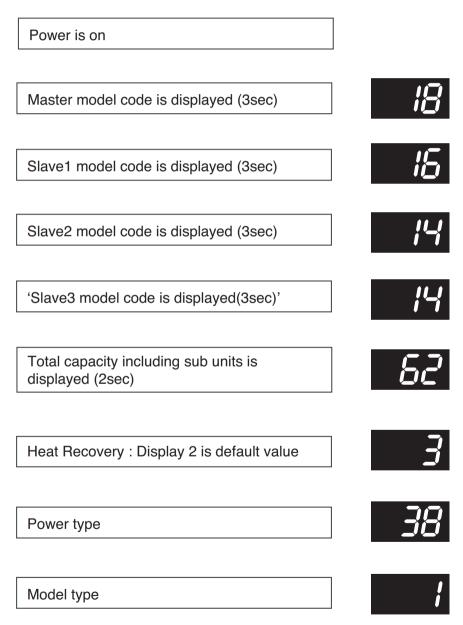
^{*} In the case of series unit if the error occurs more than a single unit at same time then only a small unit number will be displayed.

Example) Master and Slave2 occur error no. 50, '501' display on the 7segment.

3.5 Pressure switch

- Main has pressure sensing switch in series between compressor and power relay.
- The state of pressure sensing switch is normally on. It has small electric current from 220V AC. Never touch the connecting terminal with hand nor short two wires directly.

^{*} Master: ***1, Slave1:***2, Slave2:***3, Slave3:***4


4. Other control

4.1 Initial setup

There are 4 initial setup steps before running.
All DIP switch setting must be completed before initial setup.

Step 1 : factory setting value display
 Factory setting value is displayed in 7 segment on PCB for 24sec.

 All dip switches must be set properly before step 1.

- 2) Step 2: Communication check
 - If all model code is displayed in 7 segment including all Slave unit, communication between outdoor units is normal.
 - If 104* is displayed in 7-segment, check communication wires between outdoor units and Dip switch setting.
- 3) Step 3: PCB error check
 - After 40 sec, error check begins.
- Master/ Slave unit
 - All errors of units including Slave units are displayed in 7 segment.
 - If communication between main PCB and inverter PCB isn't normal, 52* is displayed in 7-segment If communication between main PCB and fan PCB isn't normal, 105* is displayed in 7-segment. If error is displayed, check corresponding wires.
- 4) Step 4: Auto addressing of indoor units
 - Auto addressing begins when address(red) button in Main PCB is pressed for 6 sec.
 - During auto addressing, 7 segment on main PCB displays "88"
 - After auto addressing, the number of indoor units is displayed in 7 segment for 30 sec. The address of each indoor unit is displayed on each wired remote controller.

■ Heat Recovery (Main PCB)

DIP-SW01 7 - Segment

SW04C (X : cancel)

SW03C (▶ : forward)

SW02C (◀ : backward)

SW01C (● : confirm)

SW01D (reset)

Push address(red) button for 3 sec.

Auto address starts

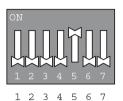
88

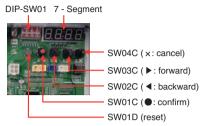
Auto address is in progress (max. 15 min.)

88

The number of indoor units is displayed for 30 sec.

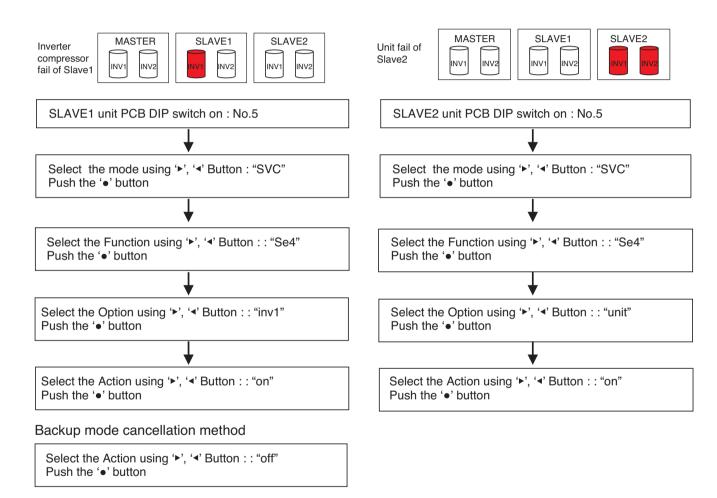
35


(35 indoor units found)


Auto address process is finished. Every indoor unit displays its address on wired remote controller and the 7 segment of main PCB is off.

■ Setting the function

Select the mode/function/option/value using '▶', '◄' Button and confirm that using the '●' button after dip switch No.5 is turned on.



MODE		FUNCTION		OPTION		VALUE		ACTION			
content	Display1	content	Display2	со	ntent	Display3	content	Display4	implement	Display5	remarks
FDD		Refrigerant auto charg- ing(cooling)	Fn 1	-	-	-	-	-	Operate	show the process	-
		Refrigerant auto charg- ing(heating)	Fn2	-	-	-	-	-	Operate	show the process	-
	Fdd	Refrigerant amount auto judgment(cooling)	Fn∃	-	-	-	-	-	Operate	show the process	-
וטט	F00	Refrigerant amount auto judgment(heating)	۴n	-	-	-	-	-	Operate	show the process	-
		ITR(Cooling)	Fn5	-	-	-	-	-	Operate	show the process	-
		ITR(Heating)	Fr	-	-	-	-	-	Operate	show the process	-
		Cool & Heat Selector	Fn l	oFF	op1~op2	selected the option	-	-	change the set value	blank	save in EEPROM
		Static pressure compensation	Fn2	oFF	op1~op3	selected the option	-	-	change the set value	blank	save in EEPROM
Install	Fune	Night low noise	Fn∃	oFF	op1~op12	selected the option	-	-	change the set value	blank	save in EEPROM
		Overall defrost	۴n	on	oFF	selected the option	-	-	change the set value	blank	save in EEPROM
ation		ODU address	Fn5		-	-	0~255	set the value	change the set value	blank	save in EEPROM
		Snow removal & rapid defrost	Frb	oFF	op1~op3	selected the option	-	-	change the set value	blank	save in EEPROM
		IDU capacity adjusting	Fn	op.	1~op2	selected the option	-	-	change the set value	blank	save in EEPROM
		Target pressure adjust- ing	FnB	op.	1~op4	selected the option	-	-	change the set value	blank	save in EEPROM
	Sue	Pump Down	5E 1		-	-	-	-	start opera- tion	Pd	-
		Pump Out	SE2		-	-	-	-	start opera- tion	Po	-
		Vacuum mode	5E3		-	-	-	-	start opera- tion	uRcc	-
SVC		Backup	SE4	unit	inv1~inv2	selected the option	-	-	start opera- tion	on off	save in EEPROM
		Forced oil return	5E5		-	-	-	-	start opera- tion	- 1	-
		Forced defrost	5Eb		-	-	-	-	start opera- tion	def	-
		Cycle data view	5E7	op	1~op7	-	-	-	Show in segment	Show the each numerical value in process	-

^{*} Functions save in EEPROM will be kept continuously, though the system power was reset.

4.2 Emergency operation

- If a compressor is out of order, the system can be run except the defective compressor by backup function.
- Automatic emergency operation(automatic back up function)
 If outdoor unit detect comp defect during operation, automatic back up mode is set.
 - 1) Inverter 1 compressor automatic emergency operation.
 - 2) Inverter 2 compressor automatic emergency operation.
- Manual emergency operation(Manual back up function)
 - 1) Check which compressor is broken. (refer to "Trouble Shooting Guide")
 - 2) Turn off the power.
 - 3) Set the dip S/W of defective outdoor unit.
 - 4) Turn on the power.

CAUTION

Emergency operation with inverter compressor failure should not last 48 hours. → It causes other compressor failure.

During the emergency operation, cooling/heating capacity may be lower.

FDD Check list

- * Please check the following.
- 1. Automatic address setting has been preceded by a test drive will proceed on the premise.

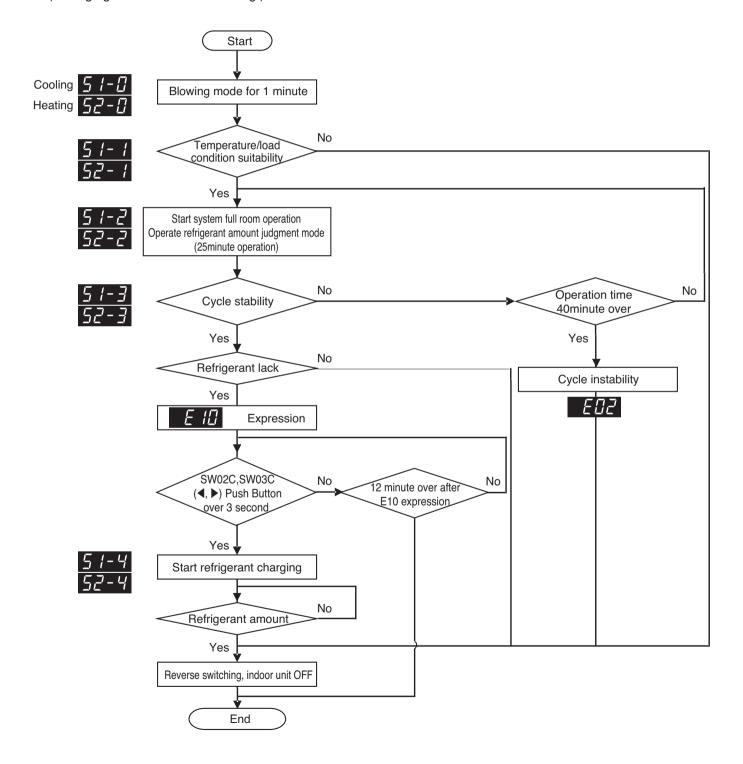
 After installation, auto address must be checked because it is related the number of installation
- 3 minutes after the initial power on test drive at one point.Aafter the power on, MICOM data reset and communication with indoor unit time is 3minute
- 3. Indoor unit must be 7 series over
- 4. In FDD test drive, state of the test drive and error are displayed using 7 segment.

 The process of the test drive and state of error are displayed using only the master outdoor uint.
- 5. If the error is occurred during the test drive, it will be operated the last step after turn off the test drive.

 Ater the dip switch off, pressing the black button for 2 seconds in order to reset all data and return to operation standby state
- 6. SW04C (X: Cancel) button and SW01C (●: execute) button is pressed for more than 5 seconds at the same time when the test drive must be turned of the reason of abrupt trouble during test drive.
- 7. All indoor units are turned off or the results are displayed after 90 seconds when the test drive is over.
- 8. First, please pressing the main PCB reset button for 3 minutes when you want to use all FDD functions.
- 9. Normal test run is operated when you use more than LGMV 7.0.3 version.

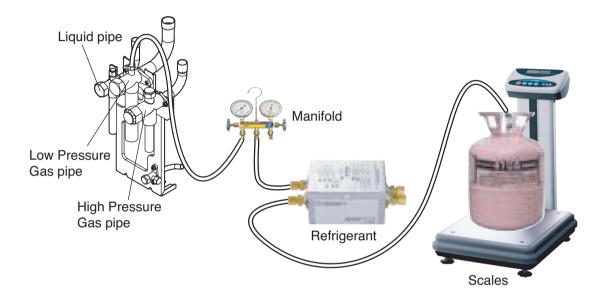
4.3 Refrigerant Auto Charging

This function charge suitable refrigerant amount in system through cycle operation automatically.


If the refrigerant amount is inaccurate by service, pipe leakage, etc, can use this function.

Use refrigerant charging, if service only.

Put the refrigerant by calculating the refrigerant amount surely, if install.


Refrigerant charging time can be different following the charging refrigerant amount.

(Charging time: about 3 minute/kg)

- · Install refrigerant charging device like this page.
- If it is out of the guarantee temperature range, can end by not operating refrigerant charging.
- Outdoor guarantee temperature range (cooling : 0~43°C, heating : -10~24°C)
- Indoor guarantee temperature range (cooling : 18~32°C, heating : 10~27°C)
- If the system are turned off continuously by low pressure decrease excessively due to refrigerant lack before E10 expression, try again after add about 15% refrigerant of regular refrigerant amount.
- Press SW04C(X: Cancel) button and down dip switch after function end.

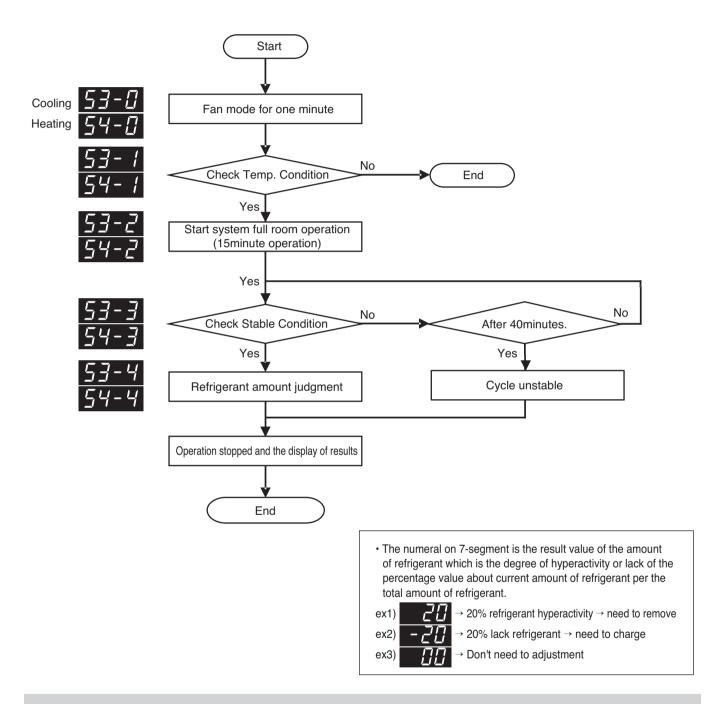
4.4 Refrigerant charging method and error contents

< ORDER >

- 1. Prepare Manifold, refrigerant and scale. (sold separately)
- 2. Connect Manifold to refrigerant charging port As shown in the figure above.
- 3. Connect Manifold and refrigerant.
- 4. Perform the air purge between Manifold hose.
- 5. When fill the system with the refrigerant.

WARNING

• When perform the leakage test and air purge, please use a vacuum pump or an inert gas. (nitrogen) If you use Oxygen, compressed air and flammable gas, there are fire and danger of explosion. There are risk of death, personal injury, fire, explosion.

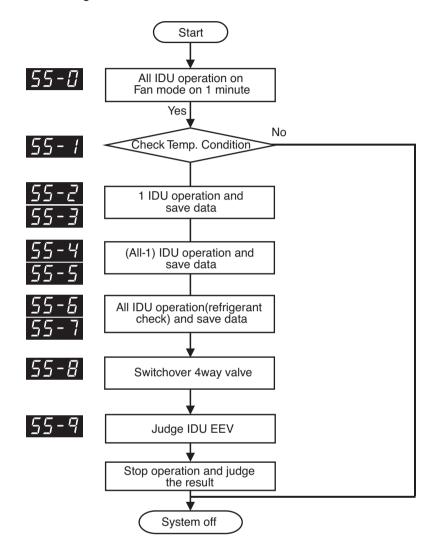

CAUTION

- 1. When you put refrigerant, using the specified equipment.
- 2. Please the wired remote control to set the main unit.
- 3. During Indoor unit operating, be careful not to be Thermo off.
- 4. If The Outdoor unit occurred frost when Heating automatic refrigerant filling, Please restart corresponding function after forced defrost.

4.5 Refrigerant amount automatic judgment

Ability to judge the system's refrigerant automatically through the system operation.

Function to Judge the refrigerant shortage and excess and can be used with refrigerant auto charging function.



- If it is out of the Indoor units load and outdoor guarantee temperature range, can end Refrigerant amount automatic judgment.
 - Indoor unit load range: 80~130%
 - Outdoor warranty temperature range(cooling: 0~43°C, heating:-10~24°C)
- although 15minutes have not elapsed during full room operation indoor unit, amount of refrigerant is judged directly in special case.
- Press SW04C(X: Cancel) button and down dip switch after function end.

4.6 ITR(Cooling)

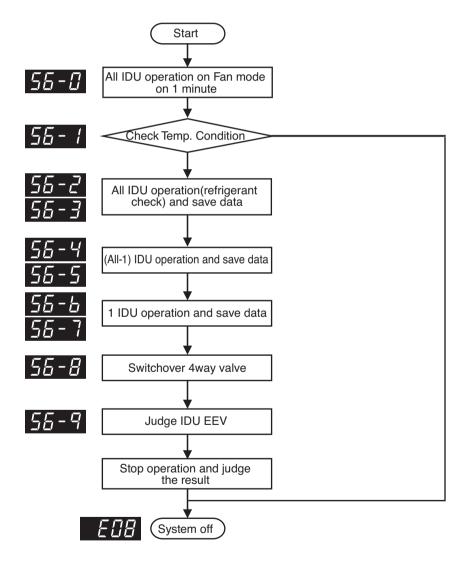
This function is checking process for normal operation of parts and system On operating system.

· Saved data can check using LGMV.

		Judgment	Code	Display
		OK	5-Cn	5-cn
	IDU EEV	NG	5-C1	5-61
		Impossible to Judge	5-CF	5-cF
ITR(Cooling)	Refrigerant -	More than standard	ex) 20%	20
		Less than standard	ex) -15%	- 15
		Don't Adjustment required	00	00
		Impossible to Judge	3-CF	3-cF

Guaranteed Temperature range(Error occurs out of guaranteed temperature range)

IDU : 18 ~ 32 °C ODU : 0~ 43 °C


In case the function is not used, set the dip S/W OFF and reset the power.

NOTE: If occur the indoor unit error, that indoor unit operate in fan mode. But don't display the indoor unit number that occurred an error.

4.7 ITR(Heating)

This function is checking process for normal operation of parts and system On operating system.

· Saved data can check using LGMV.

		Judgment	Code	Display
		OK	6-Cn	5-cn
	IDU EEV	NG	6-C1	5-c 1
		Impossible to Judge	6-CF	5-cF
	Outdoor Main EEV	OK	7-Cn	7-60
ITR(Heating)		NG	7-C1	7-61
TTT(Tleating)		Impossible to Judge	7-CF	7-EF
	Defries vent	More than standard	ex) 20%	20
		Less than standard	ex) -15%	- 15
	Refrigerant	Don't Adjustment required	00	00
		Impossible to Judge	3-CF	4-cF

Guaranteed Temperature range(Error occurs out of guaranteed temperature range)

IDU : 18 ~ 32 °C ODU : -10 ~ 24 °C

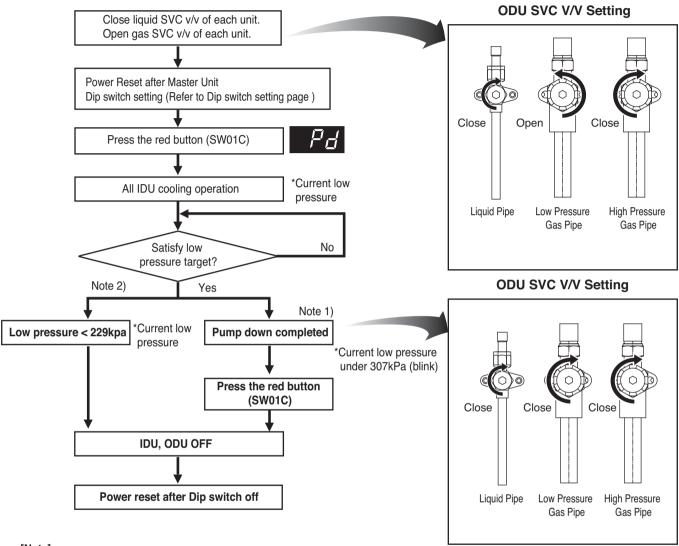
In case the function is not used, set the dip S/W OFF and reset the power.

4.8 FDD Code

Code	Display	Cause
E01	E0 (130% more than outdoor unit rated capacity or 80% less than outdoor unit rated capacity
E02	E02	System Unstable Error
E03	E03	Temperature Range Error
E04	E04	Can't operate FDD function to be frost
E05	E05	In case error occurs during sensor checking process
E06	E06	Occurs when the indoor unit number is one.
E07	E07	If not click the button in auto charging function.
E08	E08	FDD feature forced termination. Or Refrigerant auto charging normal termination.
E09	E09	Wait a system-off for operate FDD function.
E10	E 10	Need additional refrigerant sealed.
System error	Same as normal operation	Occur system error.

4.9 Multi V ITR result report

Follow the process.



∢ IDU Gr.1 ▶	. М	lore HR Info Mor	re Idu Info								
					Multi V Start u	p Confirmation					
Date											
		Company Name & Address		Tele	phone		Name				
	Installer										
Person In Charge											
Charge	Consultant										
	Supervisor										
	Cupervisor	М	lodel	Mo	odel	No.			Position		
	0.11		0		0						
	Outdoor Unit		0	(0						
Product	Indoor Unit					0					
	IIIdddi diiit										
	HR Unit					0					
0	M-d-		255			n Results		4 IDII 0		OTED	
Operation	on Mode		OFF		All IDU Operation	1		1 IDU Operation	1	STEP	0 Critorian For
	Check	Items		Min.	Max.	Average	Min.	Max.	Average	OK/NG	Criterion For Judgment
- 0		IDU Air Temp		-	-	0	-	-	-		20~30°C
Temp. Condition		ODU Air Temp)	-	-	0	-	-	-		1
	II	DU pipe inlet Ter		0	0	0	0	0	0		
Indoor Unit	IC	OU pipe outlet ter	mp	0	0	0	0	0	0		
	ı	IDU LEV Openes	ss	0	0	0	0	0	0		
		High F	Pressure	0	0	0	0	0	0		3,600kPa ↓ (Cool
	Pressure	Pressure	. 1000010		, and the second			Ů			2,300kPa ↓ (Heat
	Low F	Pressure	0	0	0	0	0	0		1,300kPa ↑ (Cool	
			l	0.11- 0 0.5	1 011					200kPa ↑ (Heat)	
		COMP Opera	ate Combination		0 Hz Comp : 0 E/	0	-	-	- 0		
			ODU #1 Comp1 ODU #1 Comp2	-	-	0	-	-	0		
			ODU #2 Comp1		-	0	-	-	0		24A
			ODU #2 Comp2		-	0	-	-	0		
		CT Value	ODU #3 Comp1	-	-	0	-	-	0		
			ODU #3 Comp2	-	-	0	-	-	0		
			ODU #4 Comp1	-	-	0	-	-	0		
	COMP		ODU #4 Comp2	-	-	0	-	-	0		
		Discharge	ODU #1 Comp1	-	-	300	-	-	300		
		Temp.	ODU #1 Comp2	-	-	300	-	-	300		50°C ~ 100°C
			ODU #2 Comp1	-	-	300	-	-	300		_ 00 0 .00 0
			ODU #2 Comp2	-	-	300	-	-	300		
			ODU #3 Comp1 ODU #3 Comp2	•	-	300 300	-	-	300 300		_
			ODU #4 Comp1	-	-	300	-	-	300		
Outdoor Unit			ODU #4 Comp2	-	-	300	-	-	300		+
		R-r	phase	0	0	0	-	-	-		342~456 V
	Main Voltage		phase	-	-	-	-	-	-		
	Main Current	R-p	phase	0	0	0	-	-	-		20A ↓
	Main Current	T-p	phase	-	-	-	-	-	-		
	Discharge	OD	OU #1	-	-	0	-	-	0		
	Superheat		DU #2	-	-	0	-	-	0		10°C ~
			DU #3	-	-	0	-	-	0		50°C(Heat)
	0		OU #4	-	-	0	-	-	0		0.500 (0. "
	Suction		OU #1	-	-	0	-	-	0		0.5°C (Cool)
	Superheat		OU #2 OU #3	-	-	0	-	-	0		0.5°C~7°C(Hea
			DU #3 DU #4	-	-	0	-	-	0		+
	ODU LEV		OU #1	0	0	0	0	0	0		+
	Openness		DU #2	0	0	0	0	0	0		+
			DU #3	0	0	0	0	0	0		
			DU #4	0	0	0	0	0	0		1
		Refrigerant Chec			1		0	1	1		
		Main EEV Chec				Unstable	Condition				
		IDU EEV Check									

4.10 Pump Down

This function gathers the refrigerant present in the system to ODU

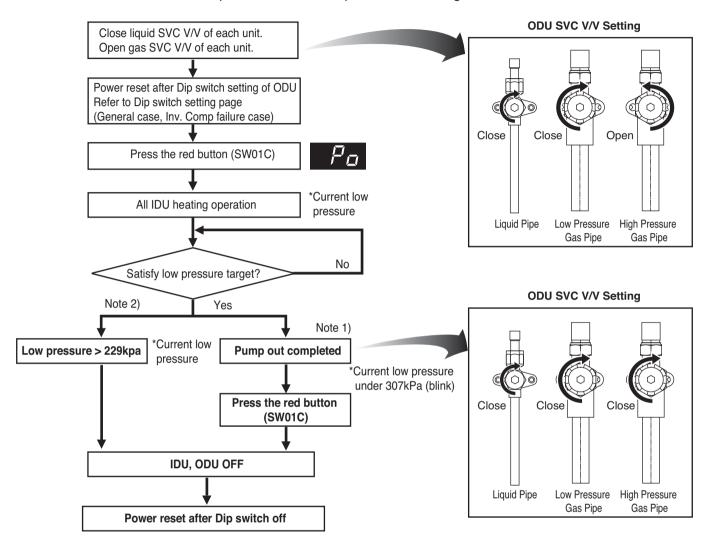
Use this function to store refrigerant of system in ODU for leakage or IDU replacement.

[Note]

If low pressure become under 307kPa (blink), close the gas SVC V/V of all ODU immediately.

If low pressure descends below 229 kPa, the system turns off automatically. Close the gas SVC V/V immediately.

1.Use pump down function within guaranteed temperature range


IDU: 20~32C ODU: 5~40C

- 2. Make certain that IDU doesn't run with thermo off mode during operation
- 3. Maximum operation time of pump down function is 30 min. (in case low pressure doesn't go down)

4.11 Pump Out

This function gathers the refrigerant to other ODU and IDU.

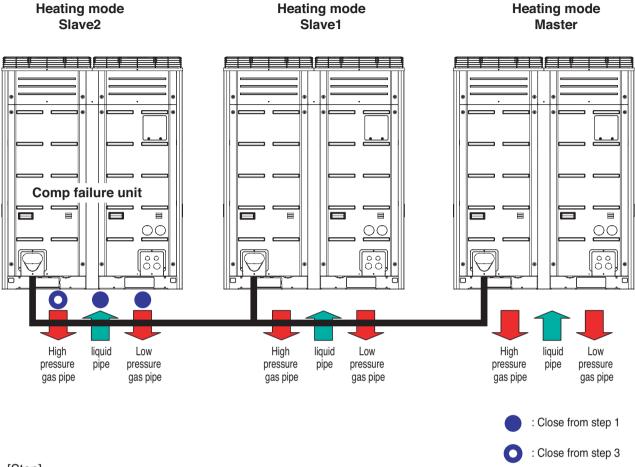
Use this function in case of compressor failure, ODU parts defect, leakage.

[Note]

If low pressure become under 307kPa (blink), close the gas SVC V/V of all ODU immediately.

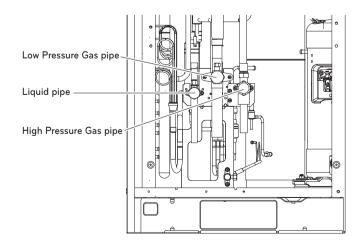
If low pressure descends below 229 kPa, the system turns off automatically. Close gas SVC V/V immediately.

This function is operating only Heat Pump model.


Caution

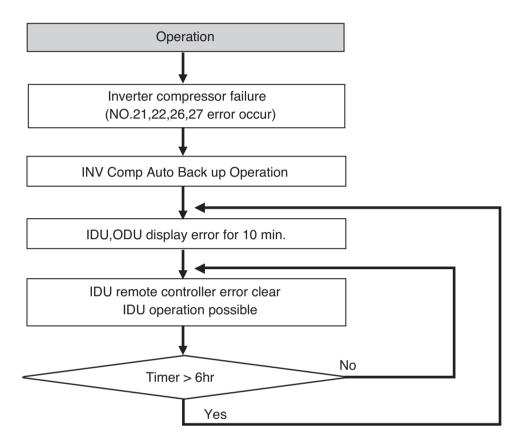
1.Use pump out function within guaranteed temperature range

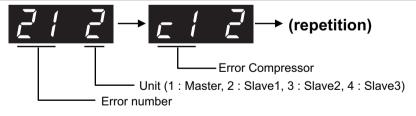
IDU: 10~30°C ODU: 5~40°C


- 2. Make certain that IDU doesn't run with thermo off mode during operation
- 3. Pump out function takes 2~5 min. after compressor start. Make certain that IDU doesn't run with thermo off mode during operation (in case low pressure doesn't go down)

Example. Slave2 ODU Inv Comp failure

[Step]

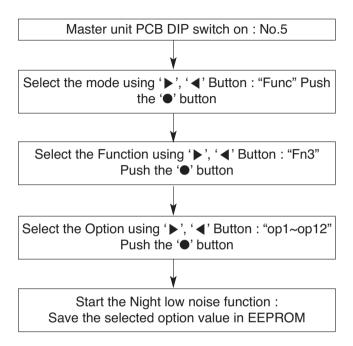

- 1. Close liquid pipe and low pressure gas pipe of the comp failure unit for pump out operation.
- 2. Operate pump out.
- 3. Close high pressure gas pipe of comp failure unit after completion.
- 4. End pump out.
- 5. Eliminate refrigerant in suction port (For eliminate refrigerant port) after opening the high pressure pipe of corresponding outdoor unit. Replace compressor and perform vacuum.
- 6. Add the refrigerant with auto charging function.


4.12 Auto Back Up Function_Inverter compressor

This function allows the system to operate in case of inverter compressor failure by backing up compressor automatically.

SVC can be asked by displaying error to the customer every 6 hours.

Example) Slave1 unit Inverter Compressor 1 start failure error No. 21 occur


Caution

- 1. Request SVC immediately if error occurs.
- 2. Auto back up is set up to 1 inverter Comp
- 3. If Inverter Comp Auto Back up starts, error displays for 10 min. every 6 hours.
- 4. Error displays continuously at the corresponding ODU.

4.13 Night Low Noise Function

In cooling mode, this function makes the ODU fan operate at low RPM to reduce the fan noise of ODU at night which has low cooling load.

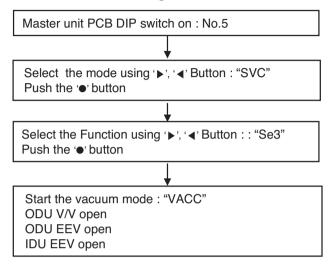
Night low noise function setting method

RPM / Time Settings

Step	Judgment Time(Hr)	Operation Time(Hr)			
op1	8	9			
op2	6.5	10.5			
ор3	5	12			
op4	8	9			
op5	6.5	10.5			
op6	5	12			
op7	8	9			
op8	6.5	10			
op9	5	12			
op10					
op11	Continuous	Continuous operation			
op12		·			

Noise

	Capacity		
Heat Recovery	8 ~ 12HP	14 ~ 20HP	
Step	Noise(dB)		
op1~op3, op10	55	59	
op4~op6, op11	52	56	
op7~op9, op12	49	53	


CAUTION

- Request installer to set the function during installation.
- In case the function is not used, set the dip S/W OFF and reset the power.
- · If ODU RPM changes, cooling capacity may go down.

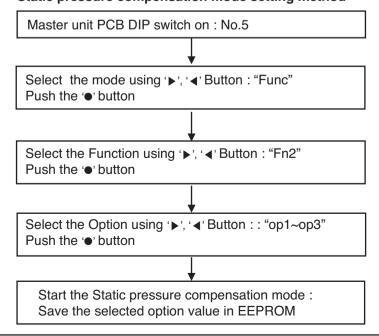
4.14 Vacuum Mode

This function is used for creating vacuum in the system after compressor replacement, ODU parts replacement or IDU addition/replacement.

Vacuum mode setting method

Vacuum mode cancellation method

Push the reset button on Master unit PCB

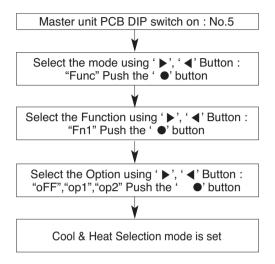

CAUTION

ODU operation stops during vacuum mode. Compressor can't operate.

4.15 Static pressure compensation mode

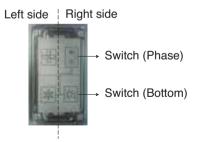
This function is used for creating vacuum in the system after compressor replacement, ODU parts replacement or IDU addition/replacement.

Static pressure compensation mode setting method



FAN Maximum RPM of each step

Сар	acity	8 ~ 12HP	14 ~ 20HP
	Standard	730	950
Max. RPM	Step1	800	1020
IVIAX. HEIVI	Step2	820	1050
	Step3	850	1110

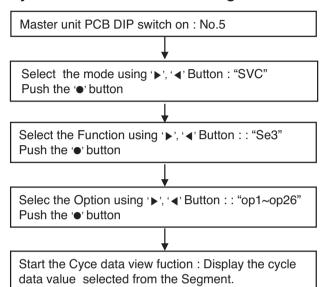

4.16 Cool & Heat selector

mode setting method

mode setting method

Switch control		Function			
Switch(Phase)	Switch(Bottom)	oFF	op1(mode)	op2(mode)	
Right	Left	Not operate	Cooling	Cooling	
Right	Right	Not operate	Heating	Heating	
Left	-	Not operate	Fan mode	Off	

CAUTION


- Ask an authorized technician to setting a function.
- If do not use a function, set an off-mode.
- If use a function, first install a Cool & Heat selector.

4.17 Cycle Data View

This function is intended to identify the Cycle data of ODU, which is running on.

The 7 Segment is display 26 different cycle data.

Cycle data view function setting method

step	Title	7-seg	example	seg_1	seg_2	seg_3	seg_4
op1	Current High Pressure	P1	4321kPa	4	3	2	1
op2	Current low Pressure	P2	1234kPa	1	2	3	4
op3	Inv 1 Pulse	h1	120		1	2	0
op4	Inv 2 Pulse	h2	30			3	0
op5	fan rpm	h3	110		1	1	0
op6	Subcooling degree	T1	5.3			5	3
op7	Superheating degree	T2	-4.5		-	4	5
op8	ODU temp.	Т3	10		1	0	0
op9	Suctino temp.	T4	43.4		4	3	4
op10	Comp1 discharge temp.	T5	150		1	5	0
op11	Comp2 discharge temp.	T6	124		1	2	4
op12	Liquid pipe temp.	T7	10		1	0	0
op13	Sc_in	Т8	10		1	0	0
op14	Sc_out	T9	10		1	0	0
op15	hex_total	T10	10		1	0	0
op16	hex_hi	T11	10		1	0	0
op17	hex_low	T12	10		1	0	0
op18	Inlet pipe temp of IDU	T13	-10°	-	1	0	0
op19	main1 eev	PLS1	1940	1	9	4	0
op20	main2 eev	PLS2	32			3	2
op21	sc eev	PLS3	16			1	6
op22	oil eev	PLS4	50			5	0
op23	vi eev 1	PLS5	1350	1	3	5	0
op24	vi eev 2	PLS6	8				8
op25	IDU running capacity	IDU1	24k			2	4
op26	Total number of IDU	IDU2	10			1	0

Part 3 HR Units

HR Units

1. Specifications	52
2. Parts Functions	53
3. Dimensions	54
4. Piping Diagrams	55
5. Wiring Diagrams	56
6. Functions	57

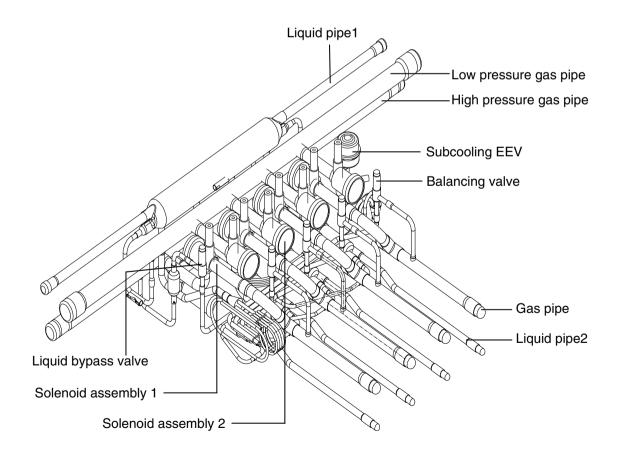
Specifications

1. HR Unit

Model	Model		PRHR021	PRHR031	PRHR041	
Max. Connectable N	Max. Connectable No. of Indoor Units		16	16 24		
Max. Connectable N	No. of Indoo	or Units of a branch	8	8	8	
Nominal Input	Cooling		26	40	40	
	Heating		26	40	40	
Net. Weight	kg		18	20	22	
	lbs		39.7	44.1	48.5	
Dimensions	mm		801x218x617	801x218x617	801x218x617	
(WxHxD)	Inch		31.5x8.6x24.3	31.5x8.6x24.3	31.5x8.6x24.3	
Casing			Galvanized steel plate			
Connecting Pipes	Indoor	Liquid Pipe [mm/inch]	Ø9.52[3/8]			
		Gas Pipe [mm/inch]	Ø15.88[5/8]			
	Outdoor	Liquid [mm/inch]	Ø9.52[3/8]	Ø12.7[1/2]	Ø15.88[5/8]	
		Low Pressure [mm/inch]	Ø22.2[7/8]	Ø28.58[1 1/8]	Ø28.58[1 1/8]	
		High Pressure [mm/inch]	Ø19.05[3/4]	Ø22.2[7/8]	Ø22.2[7/8]	
Sound Absorbing In	Sound Absorbing Insulation Material		Polyethylene Foam			
Current	Minimum circuit Amps(MCA)		0.2			
	Maximum fuse Amps(MFA)		15			
Power Supply			10	i, 220-240V, 50Hz / 1Ø, 220, 6	0Hz	

Notes:

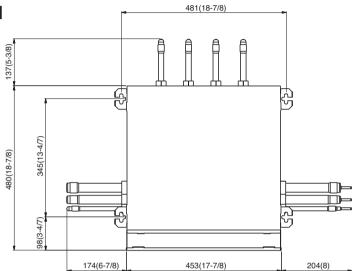
- 1. Voltage range: Units are suitable for sue on electrical systems where voltage supplied to units terminals is not below or above listed range limits.
- 2. Maximum allowable voltage unbalance between phases is 2%
- 3. MCA/MFA MCA = 1.25 * FLA MFA ≤ 4*FLA

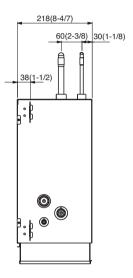

(Next lower standard fuse rating. Min. 15A)

- 4. Select wire size based on the MCA
- 5. Instead of fuse, use circuit.

Parts Functions

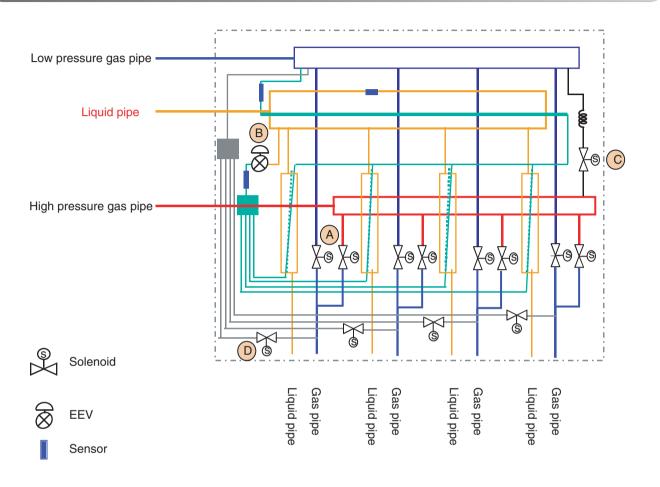
1. Parts Functions


Parts name	Symbol	Major function
Low pressure gas pipe	LPGV	Pipe for low pressure gas
High pressure gas pipe	HPGV	Pipe for high pressure gas
Liquid pipe 1	LP1	Liquid pipe connected with outdoor unit
Liquid bypass valve	LBV	Prevent liquid charging
Solenoid assembly 1, 2	SOL1, 2	Control the path for heating or cooling
Liquid pipe 2	LP2	Liquid pipe connected with indoor unit
Gas pipe	GSP	Gas pipe connected with indoor unit
Balancing valve	BLV	Control the pressure between High and Low pressure pipe during operation switching
Subcooling EEV	SCEEV	Control the subcooling


Dimensions

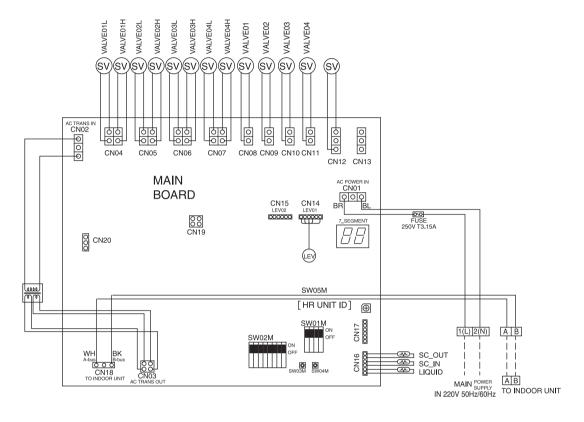
1. HR Units

PRHR021 PRHR031 PRHR041



(Unit : mm(inch))

Piping Diagrams


1. HR Unit

- (A): To be switched operation between cooling and heating by two Solenoid valve
- B : To be used decreasing noise according to sub-cooling of inlet and outlet of indoor unit (Simultaneous operation)
- © : To prevent liquid charging between high pressure gas valve and HR unit at cooling mode
- ①: To be controlled the pressure between high and low pressure pipe during operation switching

Wiring Diagrams

1. HR Units

- - - FIELD WIRING
- FACTORY

CN04	Solenoid valve 01L/H(For room1)	
CN05	Solenoid valve 02L/H(For room2)	
CN06	Solenoid valve 03L/H(For room3)	
CN07	Solenoid valve 04L/H(For room4)	
CN08	Solenoid valve 01 (Bypass for room1)	
CN09	Solenoid valve 02 (Bypass for room2)	
CN10	Solenoid valve 03 (Bypass for room3)	
CN11	Solenoid valve 04 (Bypass for room4)	
CN12	Solenoid valve bypass	
CN14	Sub cooling EEV	
CN16(SC Out)	Sensor, sub cooling out	
CN16(SC In)	Sensor, sub cooling in	
CN18(Liquid)	Sensor, liquid receiver	
SW01M	Solonoid valve number Setting(When manual address)	
SW02M(1)	Selecting, auto address(↓) or manual address(↑)	
SW02M(2~3)	Setting, total number of indoor connected	
SW03M	Setting, the address of indoor_10(When manual address)	
SW04M	Setting, the address of indoor_1(When manual address)	
SW05M	Setting, HR unit number	

Functions

1. Basic Control

1.1 Normal Operation

Actuator	Power on	Cooling operation	Heating operation	Stop state
High pressure gas valve	Close	Close	Open	Keep
Low pressure gas valve	After 30 sec. Open	Open	Close	Keep
Liquid valve	Close	Open	Close	Close

1.2 Starting Control(Heating Mode Only)

If the system is operated in the heating mode, all high pressure gas valves are opened

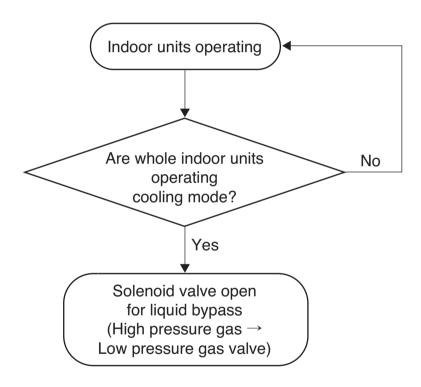
1.3 Valve Control

Mode change timer is calculated as Table 1, and valves are controlled by Mode change timer according to Table 2.

Table 1. Mode change timer calculation

Previous mode	Changing mode	Mode change timer
Stop or ventilation	Cooling or heating	120 sec
Cooling mode	Heating	180 sec
Heating mode	Cooling	120 sec
Cooling or heating	Stop or ventilation	During heating : 60 sec During cooling : 0 sec

Table 2. Valve control by mode change timer


Operating mode	Mode change timer	H/P gas valve	L/P gas valve	Balancing valve
	120 ≤ timer	Keep	Keep	Close
Cooling	0 < timer < 120	Close	Close	Open
	timer = 0	Close	Open	Close
Heating	180 ≤ timer	Keep	Keep	Close
	0 < timer < 180	Close	Close	Close
	timer = 0	Open	Close	Close
Stop or	0 < timer 5	Cooling mode : Close	Keep	Close
Stop or ventilation	Timer = 0	Heating mode : Low pressure gas valve → Close	Keep	Close

2. Special Control

2.1 Oil Return/Defrost Control

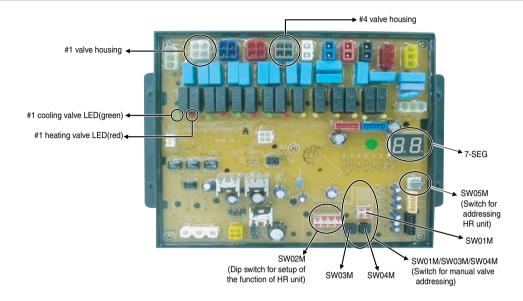
Component	Starting	Running	Ending
Inverter compressor	Stop	60 Hz	40 Hz
High pressure gas valve	Keep	Close	Open or Close
Low pressure gas valve	Keep	Open	Open or Close
Balancing valve	Open for 30s	Close	Close

2.2 Liquid Bypass Control

2.3 Subcooling EEV Control

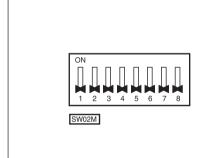
Target: about 25°C(77°F)

Subcooling EEV works with Fuzzy rules to keep the degree of subcooling at the outlet of subcooler during simultaneous operation


The degree of subcooler = T outlet of subcooler – T inlet of subcooler

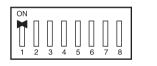
Part 4 PCB Setting and Test Run

PCB Setting and Test Run


HR Unit PCB	63
1. Switch for Setup of HR Unit	63
2. Method for Addressing of Indoor and HR Unit	68
3. Flow Chart for Auto-Addressing of Indoor and HR Unit	70
4. Example of Manual Valve Addressing	73
5. Example of Checking Valve Address	74
6. Identification of Manual Valve ID (Address)	75
Test Run	76
1. Checks Before Test Run	76
2. How to Cope with Test Run Abnormality	77
3. Dip Switch Setting	78

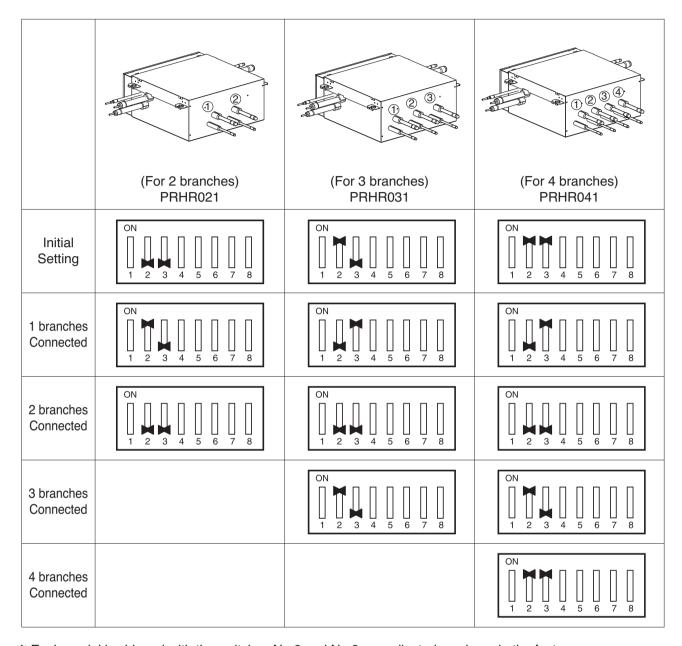
HR Unit PCB

1. Switch for Setup of HR Unit


1. Main function of SW02M

ON switch	Selection		
No.1	Method for addressing valves of an HR unit (Auto/Manual)		
No.2	Model of HR unit		
No.3	Model of HR unit		
No.4	Valve group setting		
No.5	Valve group setting		
No.6	Valve group setting		
No.7	Use only in factory production (preset to "OFF") Zoning sett		
No.8	Use only in factory production (preset to "OFF") ("ON")		

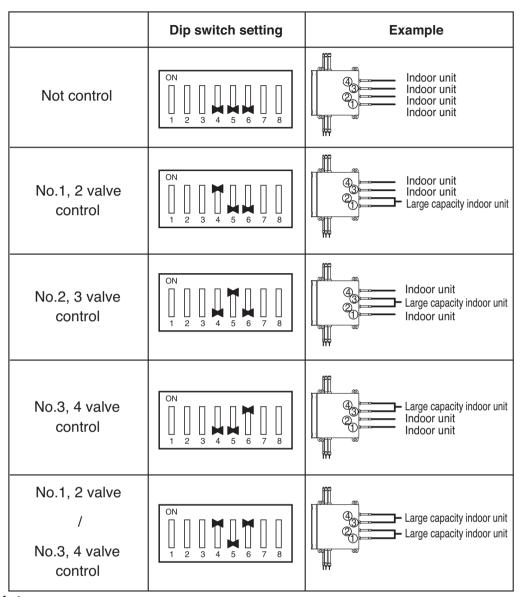
1) Selection of the method for addressing valves of an HR unit (Auto/Manual)



2) Setting the zoning control

	DIP S/W setting	
Normal control	ON	SW01M
Zoning control	ON	Turn the dip switch of the zoning branch on. Ex) Branch 1,2 are zoning control.

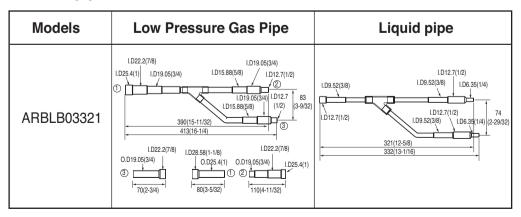
2) Selection of the model of the HR unit


★ Each model is shipped with the switches No.2 and No.3 pre-adjusted as above in the factory.

WARNING

- If you want to use a PRHR021 for 2 branches HR unit after closing the 3rd pipes, set the dip switch for 2 branches HR unit.
- If you want to use a PRHR031 for 3 branches HR unit after closing the 4th pipes, set the dip switch for 3 branches HR unit.
- If you want to use a PRHR041 for 2 branches HR unit after closing the 3rd and 4th pipes, set the dip switch for 2 branches HR unit.
- The unused port must be closed with a copper cap, not with a plastic cap.

3) Setting the Valve group.

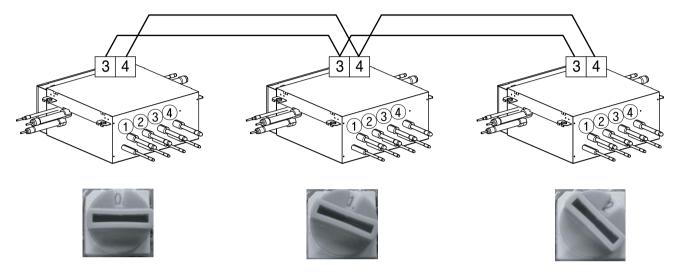


Note:

If the large capacity indoor units are installed, below Y branch pipe should be used

* Y branch pipe

[Unit:mm(inch)]



2. SW05M (Rotary switch for addressing HR unit)

Must be set to '0' when installing only one HR unit.

When installing multiple HR units, address the HR units with sequentially increasing numbers starting from '0'.

Ex) Installation of 3 HR units

3. SW01M/SW03M/SW04M (Dip switch and tact switch for manual valve addressing)

- 1) Normal setting (Non-Zoning setting)
- Used in manual addressing of the valve in the HR unit
- Set the address of the valve of the HR unit to the central control address of the connected indoor unit.
- SW01M: selection of the valve to address
- SW03M: increase in the digit of 10 of valve address
- SW04M: increase in the last digit of valve address
- Prerequisite for manual valve addressing : central control address of each indoor unit must be preset differently at its wired remote control.

	Switch No.	Setup
ON D D	No.1	Manual addressing of valve #1
1 2 3 4 SW01M	No.2	Manual addressing of valve #2
	No.3	Manual addressing of valve #3
	No.4	Manual addressing of valve #4
[SW03M]	SW03M	Increase in the digit of 10 of valve address
SW04M	SW04M	Increase in the last digit of valve address

2) Zoning setting

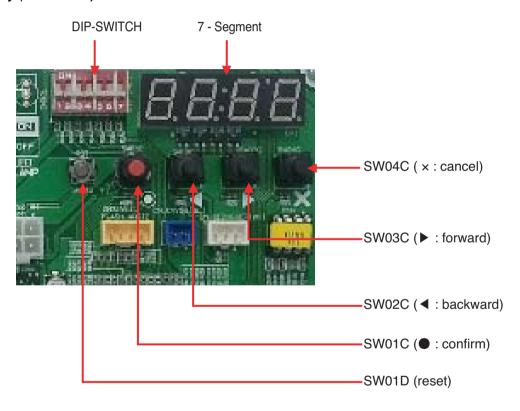
- Set the address of the valve of the HR unit to the central control address of the connected indoor unit.

- SW01M: selection of the valve to address

SW03M: increase in the digit of 10 of valve address SW04M: increase in the last digit of valve address

SW05M :Rotary S/W

- Prerequisite for manual valve addressing : central control address of each indoor unit must be preset differently at its wired remote control.

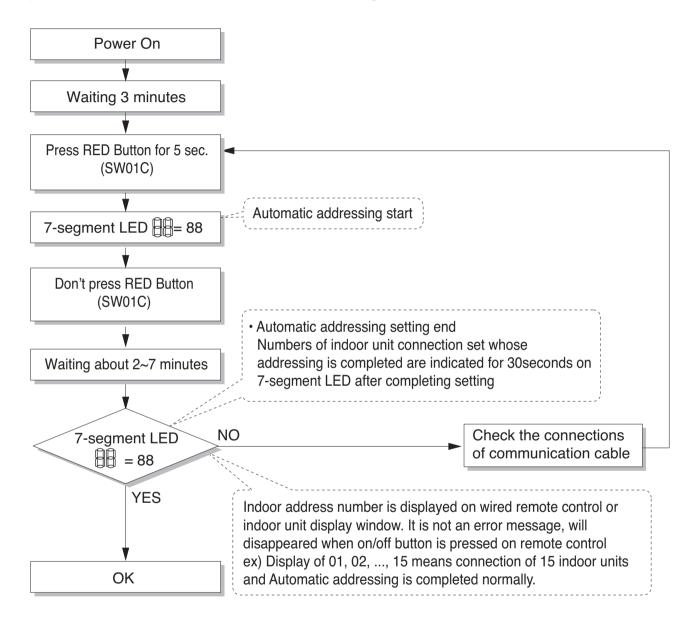

	S/W No.	Setup
	No.1	Manual addressing of valve #1
1 2 3 4	No.2	Manual addressing of valve #2
SW01M	No.3	Manual addressing of valve #3
	No.4	Manual addressing of valve #4
SWO3M	SW03M	Increase in the digit of 10 of valve address
SW04M	SW04M	Increase in the last digit of valve address
SW05M	SW05M	Manual addressing of zoning indoor units

2. Automatic Addressing

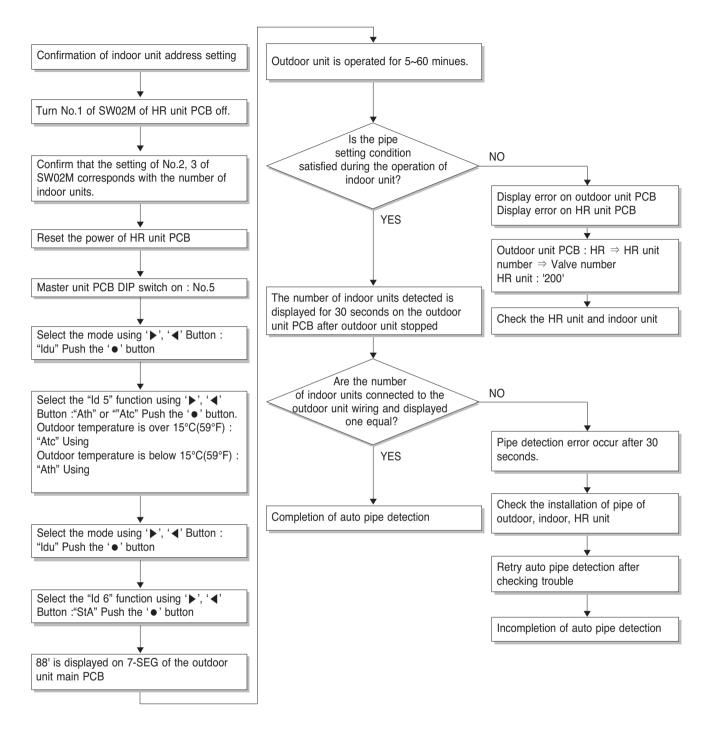
The address of indoor units would be set by Automatic Addressing

- Wait for 3 minutes after supplying power. (Master and Slave outdoor units, indoor units)
- Press RED button of the outdoor units for 5 seconds. (SW01C)
- A "88" is indicated on 7-segment LED of the outdoor unit PCB.
- For completing addressing, 2~7 minutes are required depending on numbers of connected indoor units
- Numbers of connected indoor units whose addressing is completed are indicated for 30 seconds on 7-segment LED of the outdoor unit PCB
- After completing addressing, address of each indoor unit is indicated on the wired remote control display window. (CH01, CH02, CH03,, CH06: Indicated as numbers of connected indoor units)

■ Heat Recovery (MAIN PCB)

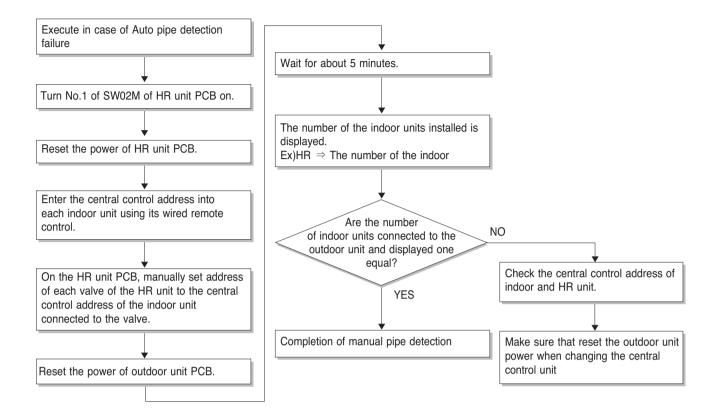


A CAUTION


- In replacement of the indoor unit PCB, always perform Automatic addressing setting again (At that time, please check about using Independent power module to any indoor unit.)
- If power supply is not applied to the indoor unit, operation error occur.
- Automatic Addressing is only possible on the master Unit.
- · Automatic Addressing has to be performed after 3 minutes to improve communication.

3. Flow chart for Chart for Auto-Addressing of Indoor and HR Unit

1) The Procedure of Automatic Addressing



2) Flow chart of auto addressing for pipe detection

* It is possible to be generated mode changing noise of heating and cooling which is normal. There is no mode changing noise at normal operation.

3) Flow chart of manual addressing for pipe detection

4. Example of Manual Valve Addressing(Non-Zoning setting)

(In case that an indoor unit of central control address "11" is connected to a valve #1 of an HR unit)

• Prerequisite for manual valve addressing: central control address of each indoor unit must be preset differently at its wired remote control

No.	Display and setup	Setup and contents
1	SW01M SW03M SW04M	Operation: None Display: None
2	SW01M SW03M SW04M	Operation: Turn No.1 of SW01M on to address valve #1 Display: Existing value saved in EEPROM is displayed in 7-SEG.
3	SW01M SW03M SW04M	 Operation: Set the digit of 10 to the number in group high data of the wired remote control connected to the corresponding indoor unit to the valve #1 by pressing SW03M. Display: Digit increasing with the times of pressing tack switch is displayed in left 7-SEG
4	SW01M SW03M SW04M	 Operation: Set the digit of 1 to the number in group low data of the wired remote control connected to the corresponding indoor unit to the valve #1 by pressing SW04M. Display: Digit increasing with the times of pressing tack switch is displayed in right 7-SEG
5	SW01M SW03M SW04M	Operation: Turn No.1 of SW01M off to save the address of valve #1 Display: "11" displayed in 7-SEG disappears

- Above setup must be done for all HR unit valves.
- The valve that is not connected with any indoor unit should be addressed with any other number than used address numbers of the valves connected with indoor units. (The valves does not work if the address numbers are same.)

5. Example of manual valve addressing (Zoning setting)

(In case that an indoor unit of central control address "11" is connected to a valve #1 of an HR unit)

Zoning control is connecting 2 or more indoor units at one pipe of HR unit. In case of Zoning control, in order to set controls with multiple indoor units connection uses the rotary switch. Namely, only the rotary switch changes from same valve set condition and set indoor units connection.

- 1) On dip switch of the corresponding valves and sets the rotary switch at 0.
- 2) Setting the number with tact switch.
- 3) In case of addition of indoor units to same port, increases 1 with the rotary switch and sets number with tact switch.
- 4) In case of checking the number which the corresponding valve is stored, turn on dip switch and set the number of rotary switch.
- 5) Indoor units set available 7 per a port(rotary switch 0~6), in case of setting above of 7 with rotary switch, it will display error.
- 6) Setting the rotary switch on original condition(HR unit number set conditions) after all finishing a piping setting.
- 7) The rotary switch set value of above number of indoor units which is connected with FF and prevents a malfunction. (Example: The case where 3 indoor units is connected in piping 1, sets from rotary switch 0,1,2 and 3,4,5 with FF set)
- Prerequisite for manual valve addressing: central control address of each indoor unit must be preset differently at its wired remote control.

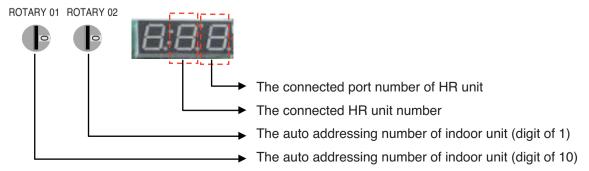
No.	Display and setup	Setup and Contents
1	7-SEG SW01M SW03M SW04M SW05M	Operation: None Display: None
2	7-SEG SW01M SW03M SW04M SW05M	 Operation : Turn dip S/W No.1 on to address valve #1 Display : Existing value saved in EEPROM is displayed in 7-SEG.
3	7-SEG SW01M SW03M SW04M SW05M	Operation: Set the digit of 10(1) to the number in Group High data of the wired remote control connected to the corresponding indoor unit to the valve #1 by pressing left tack S/W. Display: Digit increasing with the times of pressing tack S/W is displayed in left 7-SEG.
4	7-SEG SW01M SW03M SW04M SW05M	Operation: SW05M: 1 Display: Display former value.
5	7-SEG SW01M SW03M SW04M SW05M	Operation: Setting No. using SW03M and SW04M, SW05M: 1 Display: Display setting value.
6	7-SEG SW01M SW03M SW04M SW05M	Operation: Turn dip S/W No.1 off to save the address of valve #1 Display: "11" displayed in 7-SEG disappears.
7	7-SEG SW01M SW03M SW04M SW05M	Operation: Return valve of addressing HR unit. Display: None

- Above setup must be done for all HR unit valves.
- The valve that is not connected with any indoor unit should be addressed with any other number than used address numbers of the valves connected with indoor units.

(The valves does not work if the address numbers are same.)

6. Example of Checking Valve Address

(In case that an indoor unit of central control address "11" is connected to a valve #1 of an HR unit)


No.	Display and setup	Setup and contents
1	SW01M	Operation: Turn dip switch No.1 on. Display: "11" is displayed in 7-SEG
2	SW01M	Operation: Turn dip switch No.1 on. 7-SEG disappeared

7. Identification of Manual Valve ID (Address)

No.	Display and setup	Setup and contents
1	Er Swo1M	 Operation: more than 2 dip switches turned on. Display: "Er" is displayed in 7-SEG

8. Method of checking the pipe detection result at outdoor unit

- 1) Wait for 5 minutes, after Pipe detection is completed.
- 2) Turn on the No.10,14,16 DIP S/W of Sub PCB at master unit
- 3) Check the data on 7- segment, switching rotary 01,02.

Test Run

1. Checks Before Test Run

- Check to see whether there is any refrigerant leakage, and slack of power or communication cable.
- Confirm that 500 V megger shows 2.0 M Ω or more between power supply terminal block and ground. Do not operate in the case of 2.0 M Ω or less.

NOTE: Never carry out megaphm check over terminal control board. Otherwise the control board would be broken.

Immediately after mounting the unit or after leaving it turned off for an extended length of time, the resistance of the insulation between the power supply terminal board and the ground may decrease to approx. 2 M Ω as a result of refrigerant accumulating in the internal compressor. If the insulation resistance is less than 2 M Ω , turning on the main power supply and energizing the crankcase heater for more than 6 hours will cause the refrigerant to evaporate, increasing the insulation resistance.

3 Check if high/low pressure common pipe, liquid pipe and gas pipe valves are fully opened.

NOTE: Be sure to tighten caps.

Check if there are any problems in automatic addressing or not: Check and confirm that there are no error messages in the display of indoor units or remote controls and LED in outdoor units.

A CAUTION

when cutting main power of the Multi V

- · Always apply main power of the outdoor unit during use of product (cooling season/heating season).
- · Always apply power before 4 hours to heat the crank case heater where performing test run after installation of product. It may result in burning out of the compressor if not preheating the crank case with the electrical heater for more than 4 hours. (In case of the outdoor temperature below 10°C)

CAUTION

Preheat of compressor

- · Start preheat operation for 4 hours after supplying main power.
- · In case that the outdoor temperature is low, be sure to supply power 4 hours before operation so that the heater is heated(insufficient heating may cause damage of the compressor.)

2. How to cope with Test Run abnormality

The phenomena from main component failure

Component	Phenomenon	Cause	Check method and Trouble shooting
	Not operating	Motor insulation broken	Check resistance between terminals and chassis
		Strainer clogged	Change strainer
Compressor		Oil leakage	Check Oil level after opening oil port
	Stop during running	Motor insulation failure	Check resistance between terminals and chassis
	Abnormal noise during running	R-S-T misconnection	Check compressor R-S-T connection
Outdoor fan	High pressure error at cooling	Motor failure, bad ventilation around outdoor heat exchanger	Check the outdoor fan operation after being turned the outdoor units off for some time. Remove obstacles around the outdoor units
	Heating failure, frequent defrosting	Bad connector contact	Check connector
	No operating sound at applying power	Coil failure	Check resistance between terminals
Outdoor EEV	Heating failure, frozen outdoor heat exchanger part	EEV clogged	Service necessary
	Low pressure error or discharge temperature error	EEV clogged	Service necessary

When system fault occurs, the error code is displayed at indoor unit display or remote control display, the trouble shooting guide is in the service manual

[•] When CH05/53/11 ERROR occurs, check if auto-addressing has done and communication wiring is ok.

3. DIP Switch Setting

■ Location of setting Switch

Heat Recovery (Main PCB)

4. Checking the setting of outdoor units

■ Checking according to dip switch setting

- 1. You can check the setting values of the Master outdoor unit from the 7 segment LED. The dip switch setting should be changed when the power is OFF.
- 2. It checks whether the input is properly performed without the bad contact of the dip switch or not

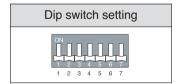
■ Checking the setting of outdoor units

Checking according to dip switch setting

- You can check the setting values of the Master outdoor unit from the 7 segment LED. The dip switch setting should be changed when the power is OFF.

Checking the initial display

The number is sequentially appeared at the 7 segment in 5 seconds after applying the power. This number represents the setting condition. (For example, represents R410A 36HP)


Initial display order

Order	No	Mean
1	8~20	Master model capacity
2	10~20	Slave 1 model capacity
3	10~20	Slave 2 model capacity
4	10~20	Slave 3 model capacity
(5)	8~80	Total capacity
	1	Cooling Only
6	2	Heat Pump
	3	Heat Recovery
	38	380V model
7	46	460V model
	22	220V model
8	1	LTE4

Example) ARUB620LTE4

1	2	3	4	(5)	6	7	8
18	16	14	14	62	3	38	1

Master Unit

Slave Unit

Dip switch setting	ODU Setting
ON 1 1 2 3 4 5 6 7 1 2 3 4 5 6 7	Slave 1
ON 1 1 2 3 4 5 6 7 1 2 3 4 5 6 7	Slave 2
ON 1 2 3 4 5 6 7 1 2 3 4 5 6 7	Slave 3

Part 5 Trouble shooting guide

Trouble shooting guide

1.	The phenomena from main component failure	79
2.	Checking Method for Key Components	80
	2.1 Compressor	80
	2.2 Fan Motor	81
	2.3 Electronic Expansion Valve	82
	2.4 Phase Bridge Diode Checking Method	85
	2.5 Inverter IPM Checking Method	86
	2.6 Fan IPM Checking Method(UX3 chassis)	87
	2.7 Fan IPM Checking Method(UX2 chassis)	88
	2.8 Pressure Sensor(High/Low Pressure Sensor)	89
	2.9 Outdoor Fan	89
	2.10 Solenoid Valve	90
	2.11 Reverse Valve	91
	2.12 Temperature Sensor	91
	2.13 Others	92
3.	Self-diagnosis function	93
4.	Trouble shooting guide	104

1. The phenomena from main component failure

The phenomena from main component failure

Component	Phenomenon	Cause	Check method and Trouble shooting
	Not operating	Motor insulation broken	Check resistance between terminals and chassis
		Strainer clogged	Change strainer
Compressor		Oil leakage	Check Oil level after opening oil port
	Stop during running	Motor insulation failure	Check resistance between terminals and chassis
	Abnormal noise during running	R(L1)-S(L2)-T(L3) mis- connection	Check compressor R(L1)-S(L2)-T(L3) connection
Outdoor fan	High pressure error in cooling mode operation	Motor failure, bad ventilation around outdoor heat exchanger	Check the fan operation to confirm proper motor functioning. Switch OFF the outdoor unit and remove obstacles, if any, around the HEX. Check connector
	Heating failure, frequent defrosting	Bad connector contact	Check resistance between terminals
Outdoor EEV	No operation sound after switching ON the power supply	Coil failure	Service necessary
	Heating failure, frozen outdoor heat exchanger part	EEV clogged	Service necessary
	Low pressure error or discharge temperature error	EEV clogged	

When system fault occurs, the error code is displayed on the indoor unit display or remote control display. The trouble shooting guide is available in the service manual.

[•] When CH05/53/11 ERROR occurs, check if auto-addressing has done and communication wiring is ok.

2. Checking Method for Key Components

2.1 Compressor

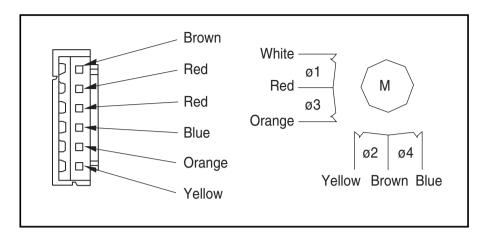
Check and ensure in following order when error related with the compressor or error related with power occurs during operation:

No.	Checking Item	Symptom	Countermeasure
1	Is how long power on during operation?	1) Power on for 12 hours or more	* Go to No.2.
	operation:	2) Power on for 12 hours or less	* Go to No.2 after applying power for designated time (12 hours).
2	Does failure appears again when starting operation?	The compressor stops and same error appears again.	* Check IPM may fail.
	Method to measure insulation resistance Figure 1. Method to measure coil resistance	2) If output voltage of the inverter is stably output. *1	* Check coil resistor and insulation resistor. If normal, restart the unit. If same symptom occurs, replace the compressor. * Insulation resistor : 50MΩ or more * Coil resistor (below table) JQA048MBA Temp. 75°C U-V 0.212 ±7% Ω (25°C(77°F)) V-W 0.212 ±7% Ω (25°C(77°F)) W-U 0.212 ±7% Ω (25°C(77°F))
	Figure 2.	If output voltage of the inverter is unstable or it is 0V. (When incapable of using a digital tester)	* Check the IPM. If the IPM is normal, replace the inverter board. * Check coil resistor and insulation resistor.

[Cautions when measuring voltage and current of inverter power circuit]

Measuring values may differ depending on measuring tools and measuring circuits since voltage, current in the power supply or output side of the inverter has no since waveform.

Especially, output voltage changes when output voltage of the inverter has a pattern of pulse wave.

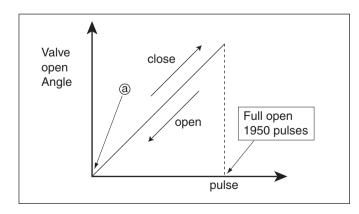

In addition, measuring values appear largely differently depending on measuring tools.

- 1) If using a movable tester when checking that output voltage of the inverter is constant (when comparing relative voltage between lines), always use an analog tester. Especially exercise particular caution if the output frequency of the inverter is low, when using a movable tester, where change of measured voltage values is large between other lines, when virtually same values appear actually or where there is danger to determine that failure of the inverter occurred.
- 2) You can use rectification voltmeter (\rightarrow +) if using commercial frequency tester when measuring output values of the inverter (when measuring absolute values). Accurate measuring values cannot be obtained with a general movable tester (For analog and digital mode).

2.2 Fan Motor

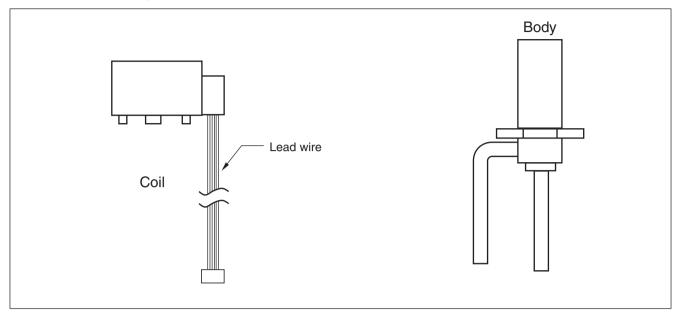
the breaker, or if the prosting condition. * Modify the power supfied scope. * For following wiring. 1. Check connection st. 2. Check contact of the	atus in front of or at the rear of cower terminal console is at apply voltage is beyond speci-
fied scope. * For following wiring. 1. Check connection state. 2. Check contact of the	. , , ,
Check connection state Check contact of the	atus.
2. Check contact of the	atus.
3 Check that parts are	connector.
screws.	firmly secured by tightening
4. Check connection of	polarity.
5. Check short circuit a	and grounding.
% Measure winding residue to ± 0.00 * Measure winding residue to \pm	stance of the motor coils. 77°F))
·	ere is defect (Fuse 800V
problems occur again there are no matters of fied in above 1) through	connector and grounding
Replace only fan cor If starting is done, it i board has defect.	ntrol boards. means that the fan control
board.	ntrol board and the main means that the main board
has defect.	
0.16	to occur even after counter- d No.2, it means that both
	problems occur again there are no matters of fied in above 1) throu (Carefully check both wires when replacing 1. Replace only fan coulf starting is done, it board has defect. 2. Replace both fan couboard. If starting is done, it has defect. 3. If problems continue

2.3 Electronic Expansion Valve

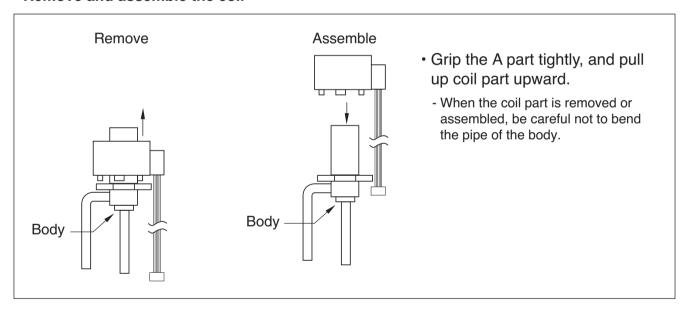

Pulse signal output value and valve operation

Output(a) No		Output state		
Output(ø) No.	1	2	3	4
ø1	ON	ON	OFF	ON
ø2	ON	ON	ON	OFF
ø3	OFF	OFF	ON	OFF
ø4	OFF	OFF	OFF	ON

· Output pulse sequence


- In valve close state: $4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 4$
- In valve open state: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$
- * 1. If EEV open angle does not change, all of output phase will be OFF
- 2. If output phase is different or continuously in the ON state, motor will not operate smoothly and start vibrating.

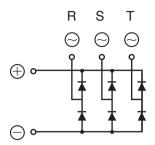
EEV valve operation



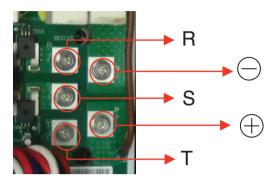
- At power ON, open angle signal of 1400 pulses output and valve position is set to (a)
 If valve operates smoothly, no noise and vibration occurs and if valve is closed, noise occurs.
- Noise from EEV can be confirmed by touching the EEV surface with a screw driver and listening the EEV noise.
- If liquid refrigerant is in EEV, the noise is lower.

EEV Coil and body(Outdoor unit)

· Remove and assemble the coil



· EEV failure check method


Failure mode	Diagnosis	Repair process	Unit
Microcomputer Driving circuit failure	1.Disconnect the EEV connector form control board and connect testing LED	Check and replace Indoor unit control board	Indoor unit
EEV locking	1.If EEV is locked, in no load state, the driving motor rotate, and clicking sound always occurs	Replace EEV	Indoor / Outdoor unit
EEV Motor coil short or misconnection	Check the resistance between coil terminal (red-white, red-yellow, red-orange, red-blue) If the estimated resistance value is in 52 3 then the EEV is normal	Replace EEV	Outdoor unit
	Check the resistance between coil terminal (brown-white, brown-yellow, brown-orange, brown-blue) If the estimated resistance value is in 150 10 then the EEV is normal	Replace EEV	Indoor unit
Full closing (valve leakage)	Operate indoor unit with FAN mode and operate another indoor unit with COOLING mode Check indoor unit(FAN mode) liquid pipe temperature (from operation monitor of outdoor unit control board) When fan rotate and EEV is fully closed, if there is any leakage, then the temperature is down If estimated temperature is very low in comparison with	If the amount of leakage is much, Replace EEV	Indoor unit
	suction temperature which is displayed at remote controller then the valve is not fully closed		

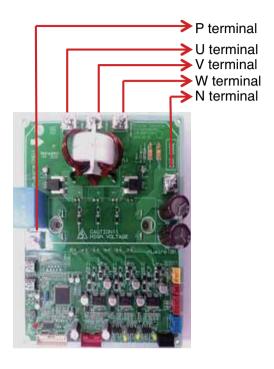
2.4 Phase Bridge Diode Checking Method

Internal circuit diagram

Appearance

- 1. Wait until Comp PCB DC voltage gets discharged, after the main power switch off.
- 2. Pull out DC_Link connector, CN COIL 1, 2 connector connected with Converter PCB.
- 3. Set multi tester in diode mode.
- 4. Measured value should be 0.4~0.7V measuring as below table.
- 5. In case the measured value is different from the table, set multi tester to resistance mode and measure. If the value is small (0 Ω) or high (hundreds M Ω), PCB needs to be replaced.
- 6. In case that bridge diode is damaged, check if Comp, Converter PCB assembly(IPM) is needed to be replaced.

Diode terminal Tester terminal	+ terminal: black(-)	- terminal: red(+)
R(~): red(+)	0.4 V ~ 0.7 V	-
S(~): red(+)	0.4 V ~ 0.7 V	-
T(~): red(+)	0.4 V ~ 0.7 V	-
R(~): black(-)	-	0.4 V ~ 0.7 V
S(~) : black(-)	-	0.4 V ~ 0.7 V
T(~) : black(-)	-	0.4 V ~ 0.7 V

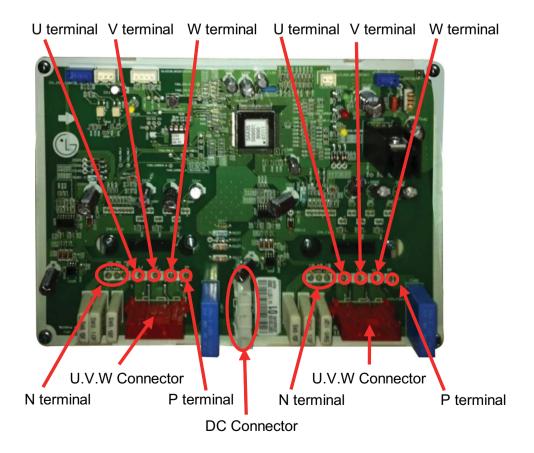

* Red(+) and black(-) are the measuring terminals of multi tester.

CAUTION

- Check the electric parts of c/box, 10 minutes after switching off the main supply and checking DC voltage is discharged. Otherwise, there is chance of getting electric shock.
- · There is chance of electric shock by charged voltage.

2.5 Inverter IPM/IGBT Checking Method

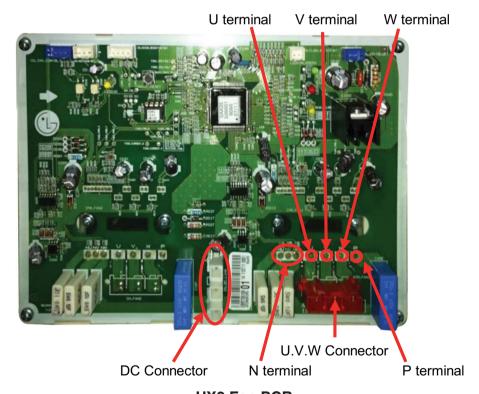
- 1. Wait until Comp PCB DC voltage is discharged after main power off.
- 2. Pull out DC_Link connector and U,V,W COMP connector connected with fan Comp PCB
- 3. Set multi tester to resistance mode.
- 4. If the value between P and N terminal of IPM is $short(0\Omega)$ or open(hundreds $M\Omega$), PCB needs to be replaced.(IPM damaged)
- 5. In the measured value with resistance mode should be within 2.3K Ω ±10%(25°C(77°F)).
- 6. In case measured value is different from the table, PCB needs to be replaced.(PCB damaged).


	P terminal : black (-)	N terminal : red (-)
U terminal : red(+)	2.3K Ω ± 10%(25°C(77°F))	3.0K Ω ± 10%(25°C(77°F))
V terminal : red(+)	2.3K Ω ± 10%(25°C(77°F))	3.0K Ω ± 10%(25°C(77°F))
W terminal : red(+)	2.3K Ω ± 10%(25°C(77°F))	3.0K Ω ± 10%(25°C(77°F))
	P terminal : red(+)	N terminal : red (+)
U terminal : black(-)	3.0K Ω ± 10%(25°C(77°F))	2.3K Ω ± 10%(25°C(77°F))
V terminal : black(-)	3.0K Ω ± 10%(25°C(77°F))	2.3K Ω ± 10%(25°C(77°F))
W terminal : black(-)	3.0K $\Omega \pm 10\%(25^{\circ}C(77^{\circ}F))$	2.3K Ω ± 10%(25°C(77°F))

^{*} Red(+) and black(-) are the measuring terminals of multi tester.

2.6 Fan IPM Checking Method

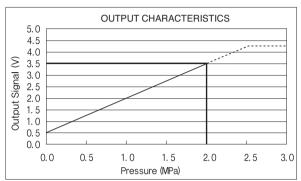
- 1. Wait until inverter PCB DC voltage gets discharged after the main power switch off.
- 2. Pull out DC Connector and U,V,W fan motor connector connected with fan PCB.
- 3. Set multi tester in diode mode.
- 4. Measured value should be 0.4~0.7V measuring as below table.
- 5. In case the measured value is different from the table, set multi tester to resistance mode and measure. If the value is small (0Ω) or high (hundreds M Ω), PCB needs to be replaced.
- 6. In case measured value is different from the table, PCB needs to be replaced (PCB damaged).


	P Terminal : Black (-)	N Terminal : Black (-)
U Terminal : Red (+)	0.4V ~ 0.7V	Open
V Terminal : Red (+)	0.4V ~ 0.7V	Open
W Terminal : Red (+)	0.4V ~ 0.7V	Open
	P Terminal : Red (+)	N Terminal : Red (+)
U Terminal : Black (-)	P Terminal : Red (+) Open	N Terminal : Red (+) 0.4V ~ 0.7V
U Terminal : Black (-) V Terminal : Black (-)		, ,

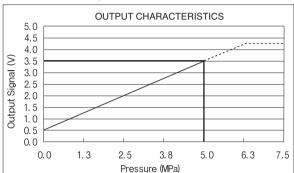
2.7 Fan IPM Checking Method

- 1. Wait until inverter PCB DC voltage gets discharged after the main power switch off.
- 2. Pull out DC Connector and U,V,W fan motor connector connected with fan PCB.
- 3. Set multi tester in diode mode.
- 4. Measured value should be 0.4~0.7V measuring as below table.
- 5. In case the measured value is different from the table, set multi tester to resistance mode and measure. If the value is small (0Ω) or high (hundreds M Ω), PCB needs to be replaced.
- 6. In case measured value is different from the table, PCB needs to be replaced (PCB damaged).

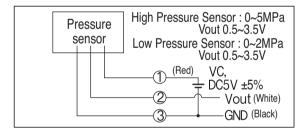
	P Terminal : Black (-)	N Terminal : Black (-)
U Terminal : Red (+)	0.4V ~ 0.7V	Open
V Terminal : Red (+)	0.4V ~ 0.7V	Open
W Terminal : Red (+)	0.4V ~ 0.7V Open	
	P Terminal : Red (+)	N Terminal : Red (+)
U Terminal : Black (-)	Open	0.4V ~ 0.7V
V Terminal : Black (-)	Open	0.4V ~ 0.7V
W Terminal : Black (-)	Open	0.4V ~ 0.7V



2.8 Pressure Sensor(High/Low Pressure Sensor)


Connect manifold gauge to the service valve of outdoor unit, and compare the output of high pressure sensor to the output of low pressure sensor to detect the defect.

below) Compare the output of pressure sensor to the output of manifold gauge pressure using the table below. Read the pressure clearly between black and white as the composition of pressure sensor.


<Low Pressure Sensor>

<High Pressure Sensor>

- 1) If the pressure of manifold gauge is 0~1kg/cm², it indicates the pressure got lower due to the leakage of refrigerant. Find the place of leakage and fix it.
- 2) If the difference of the outputs of high and low pressure is in the range of 1kg/cm², the pressure sensor is normal.
- 3) If the difference of the outputs of high and low pressure is over 1kg/cm², the pressure sensor is out of order, it need to be replaced.
- 4) The composition of pressure sensor

The pressure sensor is composed like the circuit picture shown above. If DC 5V voltage flows on red and black wire, voltage would be made between the white and black wire. The pressure which is equivalent to the pressure output is shown in the table above.

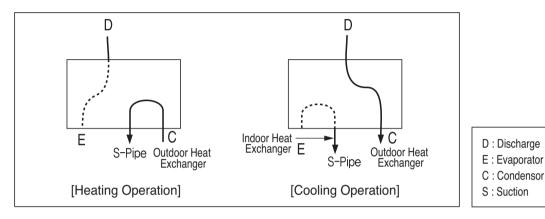
2.9 Outdoor Fan

- 1) The outdoor fan is controlled by the inverter motor which can control the number of rotations.
- 2) The outdoor fan is controlled by the high/low pressure of the outdoor unit after the operation of compressor.
- 3) There is possibility that the outdoor fan does not operate due to low capacity operation or low outdoor temperature even if the compressor is operating. This does not mean breakdown of the unit, the fan will start operating if it reaches the set point.

2.10 Solenoid Valve

Check the conformity of the operation of solenoid valve to the output sigh of control board.

1) Oil solenoid valve


- 1. It is located in the bottom of accumulator, and it starts operating after some period of time of the compressor operation to provide oil stored in the bottom of the accumulator to the compressor.
- 2. When the compressor starts operating, oil solenoid valve will be on for 2 minutes. Check if there is operation noise or piping vibration on the solenoid valve.
- 3. It turns on right after the compressor stop operating.
- 4. Solenoid valve can turn on and off repeatedly by the condition of cycle operation; this does not indicate the breakdown of the unit.
- 5. Insulation resistance in the state of connecting the valve to coil should be over $100m\Omega$ when measure it with DC mega tester(DC 500V).

2) Partial defrosting solenoid valve

- 1. Defrost operation eliminates ice attached on heat exchanger, recovering performance of heat exchanger.
- 2. Two solenoid valves will be on by turns in the extent of 6 minutes when separated defrosting is on.
- 3. It will be turned off right after the end of separated defrosting.
- 4. The change of the operation condition by the operation of solenoid valve can be checked by the before and behind temperature of bypass piping and the sound of refrigerant.
- 5. Insulation resistance in the state of connecting the valve to coil should be over $100m\Omega$ when measure it with DC mega tester(DC 500V).

2.11 Reverse Valve

- 1. Keep it off before the outdoor unit is powered on and the indoor unit is turned on.
- 2. Cooling, defrosting, oil recovery: OFF, heating: ON
- 3. When alternating cooling to heating, transform 4 way valve during re-starting for 3 minutes.
- 4. To check the mode of cooling/heating operation of 4 way valve, touch the piping surface of low pressure service valve.
- 5. Refrigerant flowchart of 4 way valve

Insulation resistance in the state of connecting the valve to coil should be over 100mΩ when measure it with DC mega tester(DC 500V).

2.12 Temperature Sensor

- 1) outdoor temperature sensor: TH1
- 2) Pipe temperature sensor: TH2
- 3) Discharge pipe(D-pipe) temperature sensor: TH3
 - 1. Check the condition of installation and the contact of temperature sensor.
 - 2. Check whether the connector contact of temperature sensor is normal.
 - 3. Measure the resistance of temperature sensor.

	TH1	TH2	TH3
Resistance	10KΩ±1%(25°C(77°F))	5KΩ±1%(25°C(77°F))	200KΩ±1%(25°C(77°F))
nesisiance	1.07KΩ±3.3%(85°C(185°F))	535KΩ±3.3%(85°C(185°F))	28KΩ±7.7%(85°C(185°F))

2.13 Others

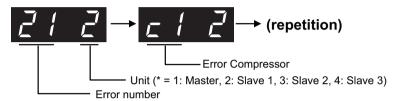
Electrolytic capacitor and resistor for voltage distribution

- 1) Disconnect an terminal of voltage distribution resistor from each DC link electrolytic capacitor
- 2) Set the multi meter to resistance mode, connect the probe to +,- terminal of the capacitor. If the estimated resistance value is increase continuously without short(value is 0), then the resistor is normal
- 3) Set the multi meter to resistance mode, confirm that the resistance value of the resistor is around 270 kOhm

Check and replace inferior components

3. Self-diagnosis function

Error Indicator


- This function indicates types of failure in self-diagnosis and occurrence of failure for air condition.
- Error mark is displayed on display window of indoor units and wired remote controller, and 7-segment LED of outdoor unit control board as shown in the table.
- If more than two troubles occur simultaneously, lower number of error code is first displayed.
- · After error occurrence, if error is released, error LED is also released simultaneously.

Error Display

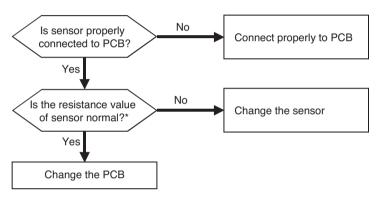
- 1st,2nd,3rd LED of 7-segment indicates error number, 4th LED indicates unit number.

Ex) 211 : No.21 error of master unit 213 : No.21 error of slave2

1051: No.105 error of master unit

* Refer to the DX-Venitilation manual for DX-Venitilation error code

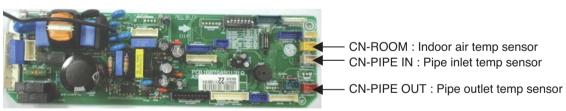
	Dis	play		Title	Cause of Error
	0	1	-	Air temperature sensor of indoor unit	Air temperature sensor of indoor unit is open or short
	0	2	1	Inlet pipe temperature sensor of indoor unit	Inlet pipe temperature sensor of indoor unit is open or short
JO.	0	3	-	Communication error : wired remote controller ↔ indoor unit	Failing to receive wired remote controller signal in indoor unit PCB
d er	0	4	-	Drain pump	Malfunction of drain pump
Indoor unit related error	0	5	-	Communication error : outdoor unit ↔ indoor unit	Failing to receive outdoor unit signal in indoor unit PCB
Ē	0	6	-	Outlet pipe temperature sensor of indoor unit	Outlet pipe temperature sensor of indoor unit is open or short
Indoor	0	9	-	Indoor EEPROM Error	In case when the serial number marked on EEPROM of Indoor unit is 0 or FFFFFF
	1	0	-	Poor fan motor operation	Disconnecting the fan motor connector / Failure of indoor fan motor lock
	1	7	-	Inlet Air temperature sensor of FAU	Air temperature sensor of indoor unit is open or short
	2	1	*	Master Outdoor Unit Inverter Compressor IPM Fault	Master Outdoor Unit Inverter Compressor Drive IPM Fault
	2	2	*	Inverter Board Input Over Current(RMS) of Master Outdoor Unit	Master Outdoor Unit Inverter Board Input Current excess (RMS)
5	2	3	*	Master Outdoor Unit Inverter Compressor DC link Low Voltage	DC charging is not performed at Master Outdoor Unit after starting relay turn on.
err	2	4	*	Master Outdoor Unit High Pressure Switch	System is turned off by Master Outdoor Unit high pressure switch.
related	2	5	*	Master Outdoor Unit Input Voltage High/ Low Voltage	Master Outdoor Unit input voltage is over 487V or below 270V
Outdoor unit related error	2	6	*	Master Outdoor Unit Inverter Compressor Start Failure	The First Start Failure by Master Outdoor Unit Inverter Compressor Abnormality
Outdo	2	9	*	Master Outdoor Unit Inverter Compressor Over Current	Master Outdoor Unit Inverter Compressor Fault OR Drive Fault
	3	2	*	Master Outdoor Unit Inverter Compressor1 High Discharge Temperature	Master Outdoor Unit Inverter Compressor1 High Discharge Temperature
	3	3	*	Master Outdoor Unit Inverter Compressor2 High Discharge Temperature	Master Outdoor Unit Inverter Compressor2 High Discharge Temperature
	3	4	*	High Pressure of Master Outdoor Unit	High Pressure of Master Outdoor Unit


	Dis	play		Title	Cause of Error
	3	5	*	Low Pressure of Master Outdoor Unit	Low Pressure of Master Outdoor Unit
	3	6	*	Master Outdoor Unit Low Compression Ratio Limited	Master Outdoor Unit Low Compression Ratio Limited
	4	0	*	Master Outdoor Unit Inverter Compressor CT Sensor Fault	Master Outdoor Unit Inverter Compressor CT Sensor open or short
	4	1	*	Master Outdoor Unit Inverter Compressor1 Discharge Temperature Sensor Fault	Master Outdoor Unit Inverter Compressor Discharge Temperature Sensor open or short
	4	2	*	Master Outdoor Unit Low Pressure Sensor Fault	Master Outdoor Unit Low Pressure Sensor open or short
	4	3	*	Master Outdoor Unit High Pressure Sensor Fault	Master Outdoor Unit High Pressure Sensor open or short
	4	4	*	Master Outdoor Unit Air Temperature Sensor Fault	Master Outdoor Unit Air Temperature Sensor open or short
	4	5	*	Master Outdoor Unit Heat Exchanger Temperature Sensor (Front side) Fault	Master Outdoor Unit Heat Exchanger Temperature Sensor(Front side) open or short
	4	6	*	Master Outdoor Unit Suction Temperature Sensor Fault	Master Outdoor Unit Suction Temperature Sensor open or short
	4	7	*	Master Outdoor Unit Inverter Compressor2 Discharge Temperature Sensor Fault	Master Outdoor Unit Inverter Compressor2 Discharge Temperature Sensor open or short
	4	9	*	Master Outdoor Unit Faulty IPM Temperature Sensor	Master Outdoor Unit IPM Temperature Sensor short/open
5	5	0	*	Omitting connection of R, S, T power of Master Outdoor Unit	Omitting connection of Master outdoor unit
ited err	5	1	*	Excessive capacity of indoor units	Excessive connection of indoor units compared to capacity of Outdoor Unit
unit rela	5	2	*	Communication error : inverter PCB → Main PCB	Failing to receive inverter signal at main PCB of Master Outdoor Unit
Outdoor unit related error	5	3	*	Communication error : indoor unit → Main PCB of Outdoor Unit	Failing to receive indoor unit signal at main PCB of Outdoor Unit .
0	5	7	*	Communication error : Main PCB → inverter PCB	Failing to receive signal main PCB at inverter PCB of Master Outdoor Unit
	5	9	*	Mixing Installation of Sub Outdoor Unit	Mixing Installation of Old Sub Outdoor Unit and New Slave Outdoor Unit
	6	0	*	Inverter PCB EEPROM Error of Master Outdoor Unit	Access Error of Inverter PCB of Master Outdoor Unit
	6	2	*	Master Outdoor Unit Inverter Heatsink High Temperature	System is turned off by Master Outdoor Unit Inverter Heatsink High Temperature
	6	5	*	Master Outdoor Unit Inverter Heatsink Temperature Sensor Fault	Master Outdoor Unit Inverter Heatsink Temperature Sensor open or short
	6	7	*	Master Outdoor Unit Fan Lock	Restriction of Master Outdoor Unit
	7	1	*	Converter CT Sensor Error of Master Outdoor Unit	Converter CT Sensor open or short of Master Outdoor Unit
	7	5	*	Master Outdoor Unit Fan CT Sensor Error	Master Outdoor Unit Fan CT Sensor open or short
	7	6	*	Master Outdoor Unit Fan DC Link High Voltage Error	Master Outdoor Unit Fan DC Link High Voltage Error
	7	7	*	Master Outdoor Unit Fan Over Current Error	Master Outdoor Unit Fan Current is over 5A
	7	9	*	Master Outdoor Unit Fan Start Failure Error	Master Outdoor Unit Fan First Position Sensing Failure
	8	6	*	Master Outdoor Unit Main PCB EEPROM Error	Communication Fail Between Master Outdoor Unit Main MICOM and EEPROM or omitting EEPROM
	8	7	*	Master Outdoor Unit Fan PCB EEPROM Error	Communication Fail Between Master Outdoor Unit Fan MICOM and EEPROM or omitting EEPROM

	Di	spla	ıy		Title	Cause of Error
	1	0	4	*	Communication Error Between Master Outdoor Unit and Other Outdoor Unit	Failing to receive Slave Unit signal at main PCB of Master Outdoor Unit
	1	0	5	*	Master Outdoor Unit Fan PCB Communication Error	Failing to receive fan signal at main PCB of Master unit.
	1	0	6	*	Master Outdoor Unit FAN IPM Fault Error	Instant Over Current at Master Outdoor Unit Fan IPM
	1	0	7	*	Master Outdoor Unit Fan DC Link Low Voltage Error	Master Outdoor Unit Fan DC Link Input Voltage is under 380V
	1	1	3	*	Master Outdoor Unit Liquid pipe Temperature Sensor Error	Liquid pipe temperature sensor of Master Outdoor Unit is open or short
or	1	1	4	*	Master Outdoor Unit Subcooling Inlet Temperature Sensor Error	Master Outdoor Unit Subcooling Inlet Temperature Sensor Error
Outdoor unit related error	1	1	5	*	Master Outdoor Unit Subcooling Outlet Temperature Sensor Error	Master Outdoor Unit Subcooling Outlet Temperature Sensor Error
rela	1	1	6	*	Master Outdoor Unit Oil Level Sensor Error	Oil Level Sensor of Master Outdoor Unit is open or short
oor unit	1	4	5	*	Master outdoor unit Main Board - External Board communication Error	Master outdoor unit Main Board - External Board communication Error
Outdo	1	5	1	*	Failure of operation mode conversion at Master Outdoor Unit	Failure of operation mode conversion at Master Outdoor Unit
	1	5	3	*	Master Outdoor Unit Heat Exchanger Temperature Sensor (upper part) Fault	Master Outdoor Unit Heat Exchanger Temperature Sensor (upper part) Fault
	1	5	4	*	Master Outdoor Unit Heat Exchanger Temperature Sensor (lower part) Fault	Master Outdoor Unit Heat Exchanger Temperature Sensor(lower part) open or short
	1	8	2	*	Master outdoor unit External Board Main-Sub Micom communication Error	Master Outdoor Unit Main Board Main-Sub Micom communication failed
	1	9	3	*	Master Outdoor Unit Fan Heatsink High Temperature	System is turned off by Master Outdoor Unit Fan Heatsink High Temperature
	1	9	4	*	Master Outdoor Unit Fan Heatsink Temperature Sensor Fault	Master Outdoor Unit Fan Heatsink Temperature Sensor open or short

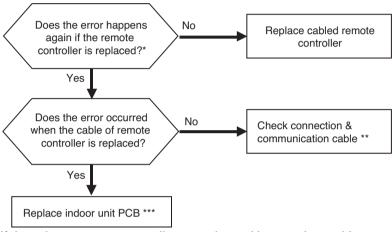
4. Trouble Shooting Guide

Error No.	Error Type	Error Point	Main Reasons
01	Indoor unit air sensor error		
01(FAU)	FAU Outlet air sensor error		Indoor unit PCB wrong connection
02	Indoor unit pipe inlet sensor error	Indoor unit sensor is open/short	2. Indoor unit PCB failure
06	Indoor unit pipe outlet sensor error	оренизноге	3. Sensor problem (main reason)
17(FAU)	FAU Inlet air sensor error		


■ Error diagnosis and countermeasure flow chart

** In case the value is more than $100k\Omega$ (open) or less than 100Ω (short), Error occurs

Refer: Resistance value maybe change according to temperature of temp sensor, It shows according to criteria of current temperature($\pm 5\%$ margin) \rightarrow Normal

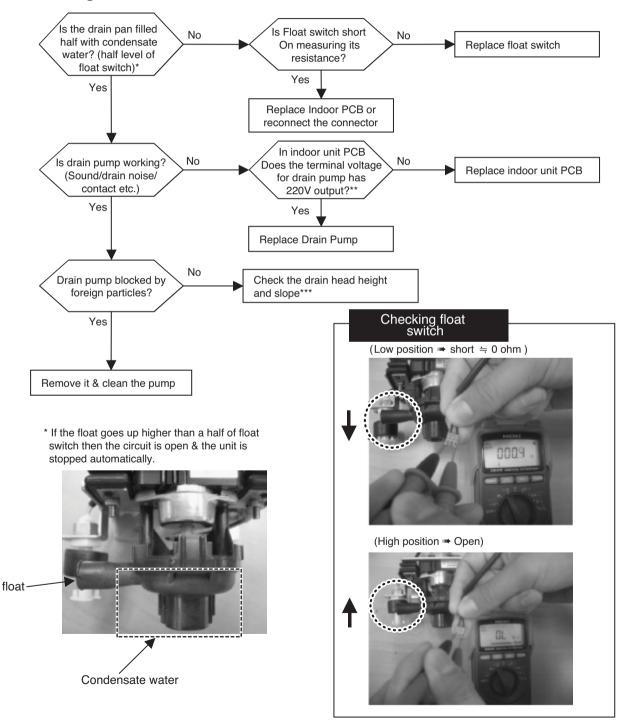

Air temp sensor: $10^{\circ}C = 20.7k\Omega$: $25^{\circ}C = 10k\Omega$: $50^{\circ}C = 3.4k\Omega$ Pipe temp sensor: $10^{\circ}C = 10k\Omega$: $25^{\circ}C = 5k\Omega$: $50^{\circ}C = 1.8k\Omega$

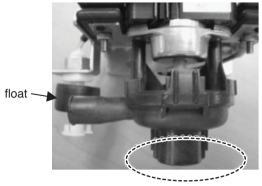
- Measure the resistance of outlet pipe temp sensor.

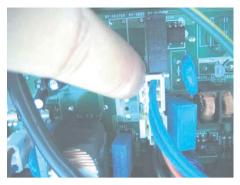
Error No.	Error Type	Error Point	Main Reasons
03	No communication between cabled remote controller & indoor unit	The remote controller did not receive the signal from indoor unit during specific time	 Remote controller fault Indoor unit PCB fault Connector fault, Wrong connection Communication cable problem

- * If there is no remote controller to replace : Use another unit's remote controller doing well
- ** Check cable : Contact failure of connected portion or extension of cable are main cause Check any surrounded noise (check the distance with main power cable)
 - → make safe distance from the devices generate electromagnetic wave
- *** After replacing indoor unit PCB, do Auto Addressing & input unit's address if connected to central controller.

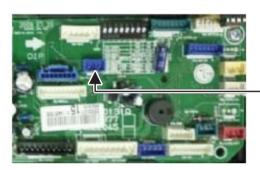
 (All the indoor units connected should be turned on before Auto Addressing


CN-REMO: Remote controller connection

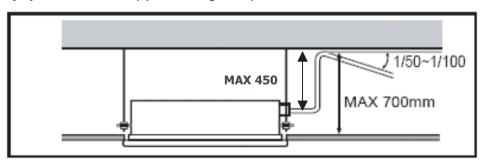

* The PCB can differ from model to model. Check from the right source.


Checking communication cable connection status

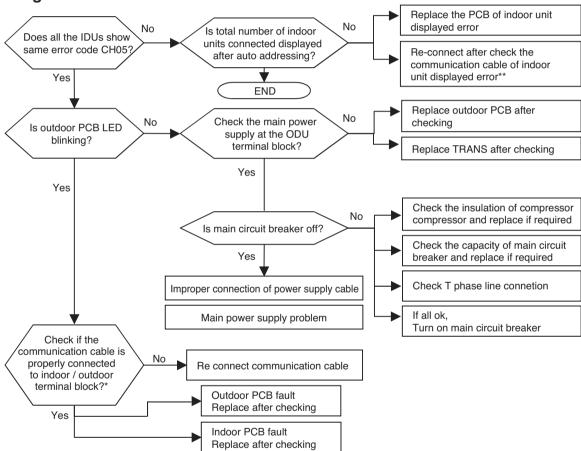
Error No.	Error Type	Error Point	Main Reasons
04	Drain pump error	Float switch is open due to rising of condensate water level because of drain pump fault or drain pipe clogging	 Drain pump/float switch fault Improper drain pipe location, clogging of drain pipe Indoor unit PCB fault



A:Point to check rotating



*** Indoor PCB drain pump connector (Check input of 220V) (Marked as **CN-DPUMP**)

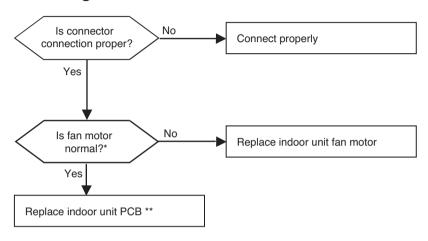


Float switch Housing (CN-FLOAT)

[***] Standard of drain pipe head height / slope


Error No.	Error Type	Error Point	Main Reasons
05	Indoor & Outdoor unit communication error	No signal communication between indoor & outdoor units.	 Auto addressing is not done Communication cable is not connected Short circuit of communication cable Indoor unit communication circuit fault Outdoor unit communication circuit fault Not enough distance between power and communication cable? T phase line disconnection or N phase connected.

 * (Note1) communication from IDU is normal if voltage fluctuation(-9V ~ +9V) exists when checking DC voltage of communication terminal between IDU and ODU


* If the DC voltage between communication terminal A, B of indoor unit is fluctuate within (-9V~+9V) then communication from outdoor unit is normal

Error No.	Error Type	Error Point	Main Reasons
09	Indoor unit EEPROM error	Error occur in EEPROM of the Indoor PCB	 Error developed in communication between the micro- processor and the EEPROM on the surface of the PCB. ERROR due to the EEPROM damage

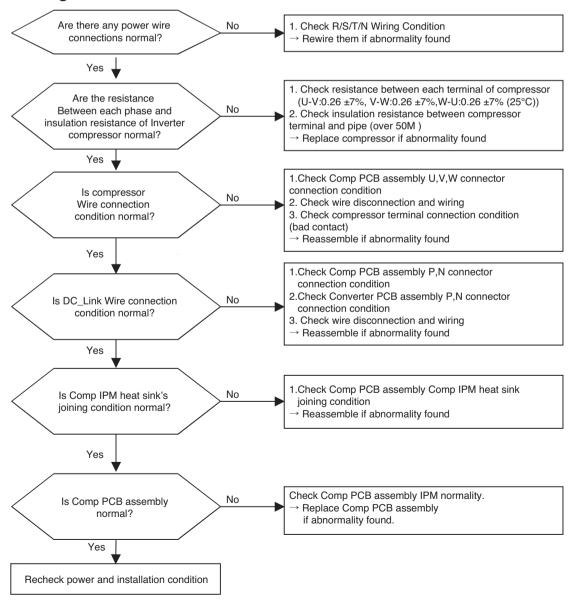
- Replace the indoor unit PCB, and then make sure to perform Auto addressing and input the address of central control

Error No.	Error Type	Error Point	Main Reasons
10	Indoor unit BLDC fan motor failure	feedback signal is absent	Motor connector connection fault Indoor PCB fault Motor fault

^{*} It is normal when check hall sensor of indoor fan motor as shown below

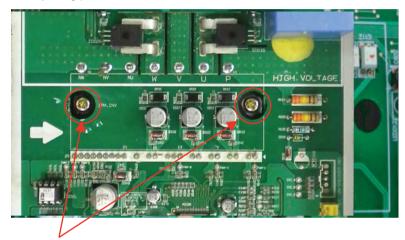
Each termainl with the tester

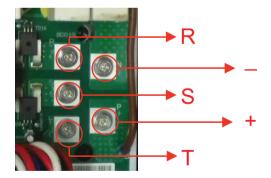
Tester		Normal resistance(±10%)	
+	-		
1	4	∞	∞
⑤	4	hundreds kΩ	hundreds kΩ
6	4	∞	∞
7	4	hundreds kΩ	hundreds kΩ


<Checking connection state of fan motor connector>

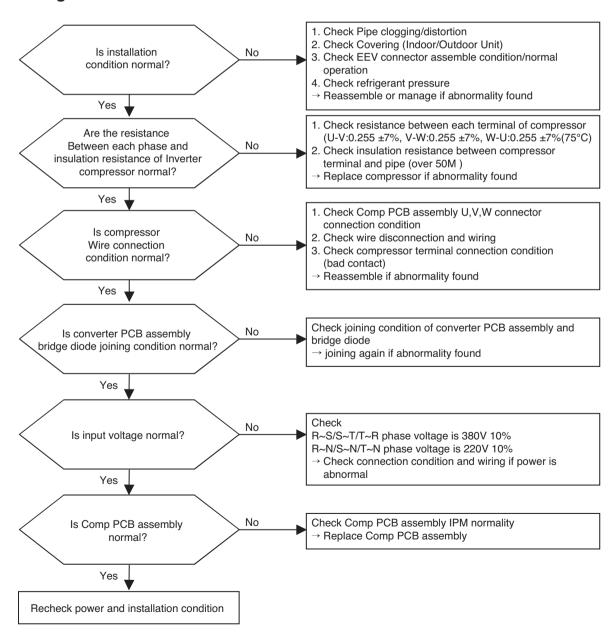
^{**} Replace the indoor unit PCB, and then make sure to do Auto addressing and input the address of central control

⁽Notice: The connection of motor connector to PCB should be done under no power supplying to PCB)


Error No.	Error Type	Error Point	Main Reasons
21*			Over current detection at Inverter compressor(U,V,W)
Master 211	Comp PCB Assy IPM Fault occur	IPM self protection circuit activation (Overcurrent/IPM overheating/Vcc low voltage)	2.Compressor damaged (insulation damaged/Motor damaged) 3.IPM overheating (Heat sink disassembled)
Slave1 212			
Slave2 213			4.Inverter compressor terminal disconnected or loose
Slave3 214			5.Inverter PCB assembly damaged 6.ODU input current low


- * Measuring resistance between each terminal of compressor
- * Compressor wire connector connection point

* IPM joining point

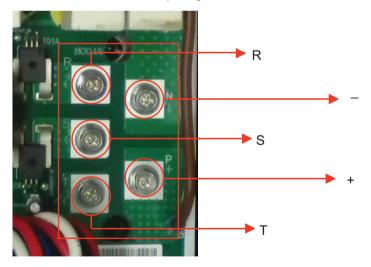


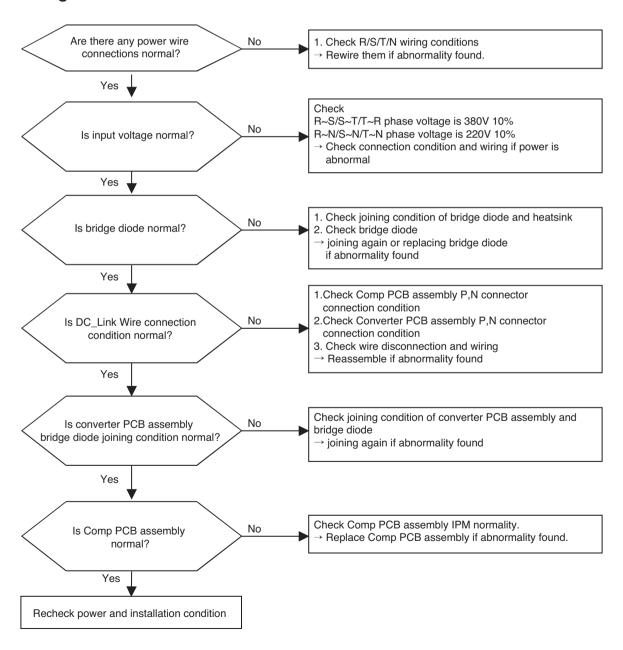
Check joining conditon

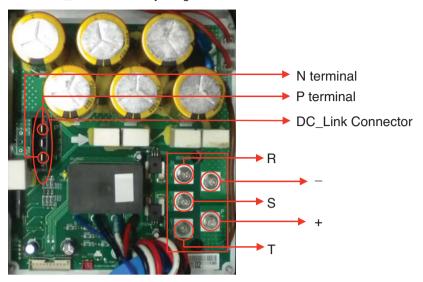
Check DC_Link Connector joining condition

Error No.	Error Type	Error Point	Main Reasons
22* Master 221 Slave1 222 Slave2 223 Slave3 224	AC Input Current Over Error	Converter PCB Assembly input 3 phase power current is over limited value(24A)	1. Overload operation (Pipe clogging/Covering/EEV defect/Ref. overcharge) 2. Compressor damage(Insulation damage/Motor damage) 3. Input voltage low 4. Power Line Misconnection 5. Converter PCB Assembly damage (Input current sensing part)

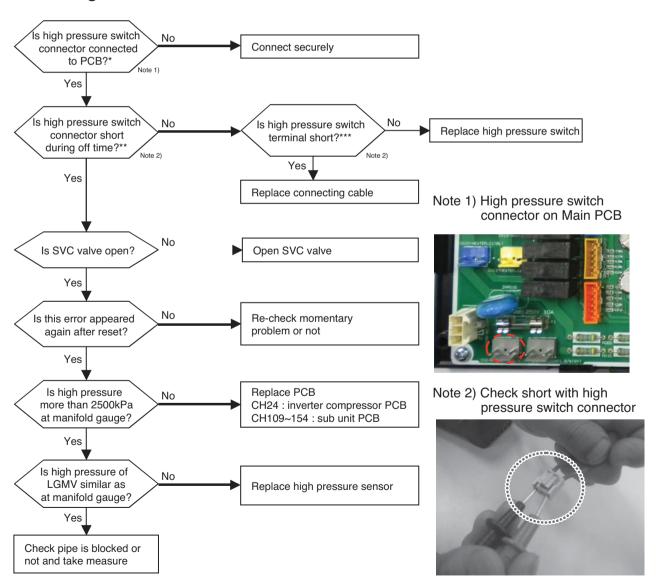
* Measuring resistance between each terminal of compressor

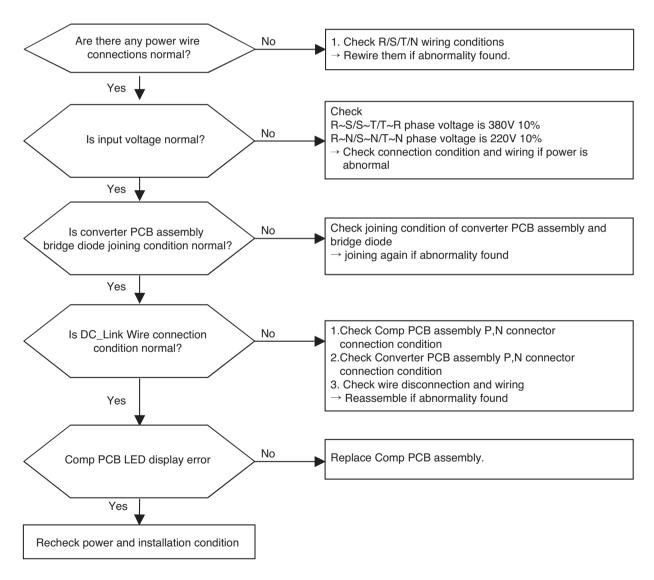

* Measuring input voltage

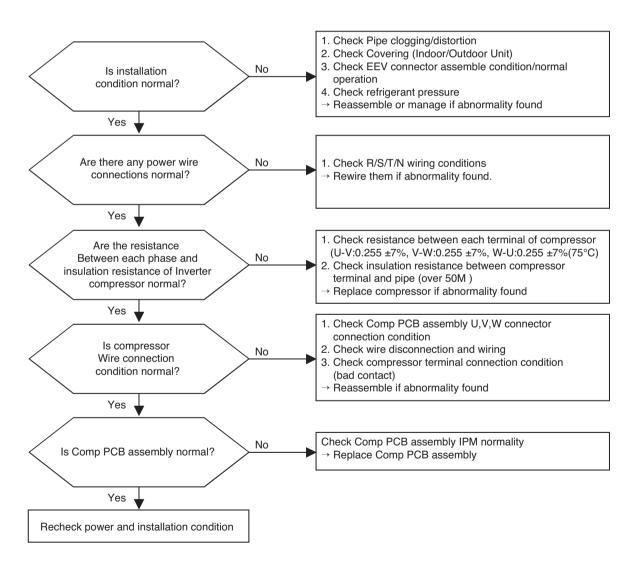

* Compressor wire connector connection


* Check DC_Link Connector joining condition

Error No.	Error Type	Error Point	Main Reasons
23* Master 231 Slave1 232 Slave2 233 Slave3 234	Inverter Compressor DC Link Low Voltage	DC Voltage isn't charged after starting relay on	1. DC Link terminal misconnection/terminal contact fault 2. Starting relay damage 3. Condenser damage 4. Comp PCB assembly damage (DC Link voltage sensing part) 5. Input voltage low


* Check DC_Link Connector joining condition

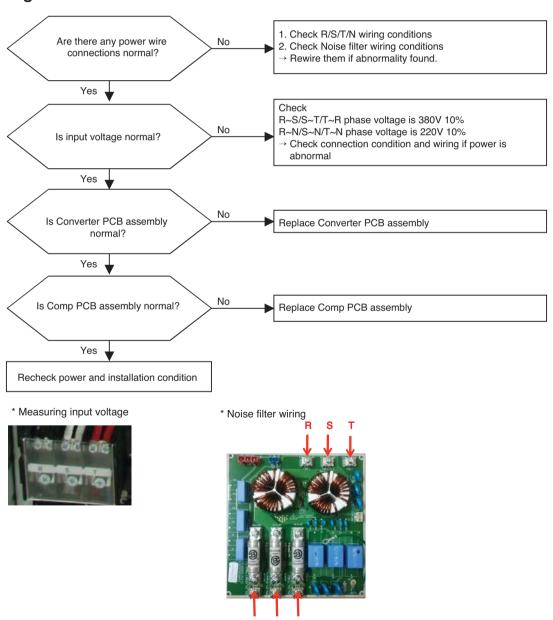

* Measuring input voltage


Error No.	Error Type	Error Point	Main Reasons
24* Master 241 Slave1 242 Slave2 243 Slave3 244	Excessive rise of discharge pressure in outdoor compressor	Compressor off due to the high pressure switch in outdoor unit	 Defective high pressure switch Defective fan of indoor unit or outdoor unit Check valve of compressor clogged Pipe distortion due to the pipe damage Refrigerant overcharge Defective LEV at the indoor or outdoor unit . Covering or clogging(Outdoor covering during the cooling mode /Indoor unit filter clogging during the heating mode) SVC valve clogging Defective outdoor PCB

Error No.	Error Type	Error Point	Main Reasons
25*			
Master 251			
Slave1 252	Input Voltage high/low	Input voltage is over limited value of the product (173V or less, 289V or more)	Input voltage abnormal (R-N) Outdoor unit Converter PCB assembly damage (input voltage sensing part) N phase line disconnection
Slave2 253			
Slave3 254			

Error No.	Error Type	Error Point	Main Reasons
26*			
Master 261			Overload operation (Pipe clogging/Covering/EEV defect/Ref.
Slave1 262	Inverter compressor starting failure Error	Starting failure because of	overcharge) 2. Compressor damage
Slave2 263		compressor abnormality	(Insulation damage/Motor damage) 3. Compressor wiring fault
Slave3 264			4. ODU Comp PCB damage (CT)

* Measuring resistance between each terminal of compressor



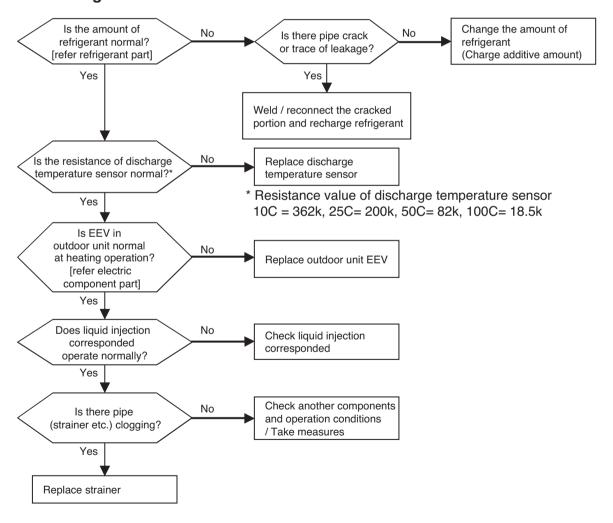
* Compressor wire connection

Error No.	Error Type	Error Point	Main Reasons
28*			
Master 281			
Slave1 282	Inverter DC link high	Inv PCB DC link voltage	1. Input voltage abnormal (R,S,T,N)
Slave2 283	voltage error	supplied over 780V	ODU Comp PCB damage (DC Link voltage sensing part)
Slave3 284			

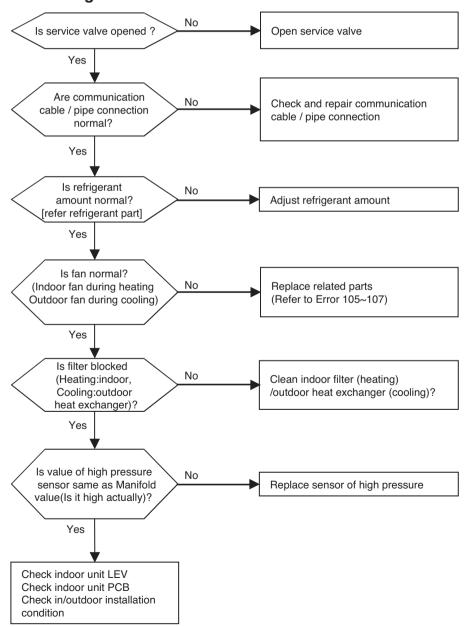
Error No.	Error Type	Error Point	Main Reasons
29*			
Master 291			Overload operation (Pipe clogging/Covering/EEV defect/Ref.
Slave1 292	Inverter compressor over current	Inverter compressor input current is over 30A	overcharge) 2. Compressor damage(Insulation
Slave2 293		current is over 30A	damage/Motor damage) 3. Input voltage low
Slave3 294			4. ODU Comp PCB assembly damage

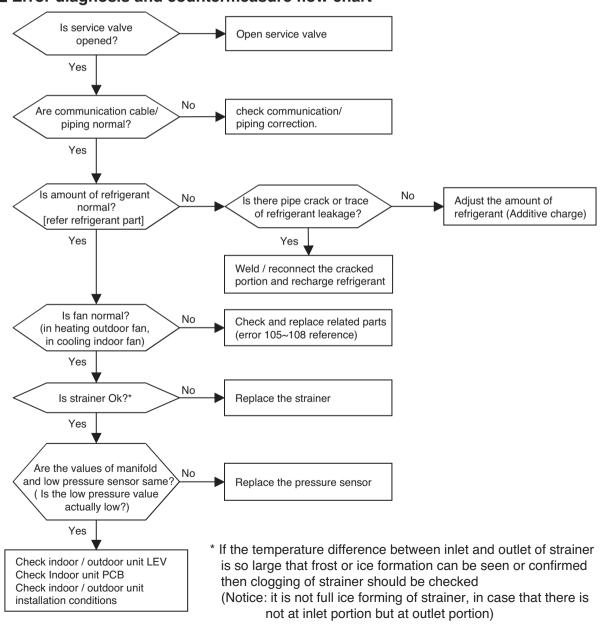
* Measuring resistance between each terminal of compressor

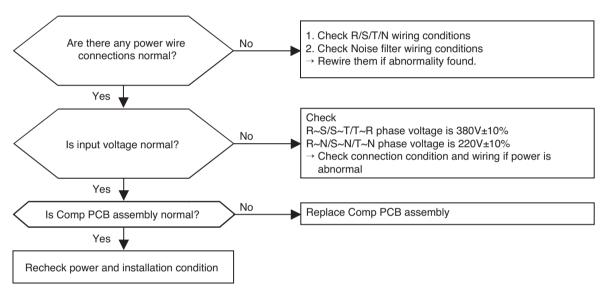
* Measuring input voltage



* Compressor wire connection

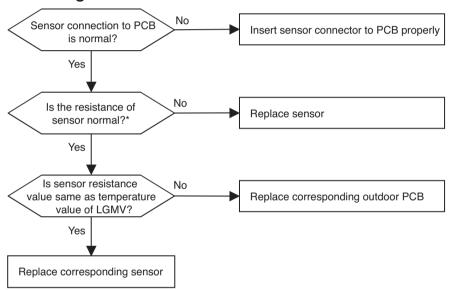



Error No.	Error Type	Error Point	Main Reasons
Slave1 322	Over-increase discharge temperature of inverter com- pressor 1 at main outdoor unit	Compressor is off because of over-increase discharge temperature of inverter compressor 1	Temperature sensor defect of inverter compressor 1 discharge pipe Refrigerant shortage / leak EEV defect Liquid injection valve defect
Slave1 332	Over-increase discharge temperature of inverter compressor 2 at main outdoor unit	Compressor is off because of over-increase discharge temperature of inverter compressor 2	Temperature sensor defect of inverter compressor 2 discharge pipe Refrigerant shortage / leak EEV defect Liquid injection valve defect

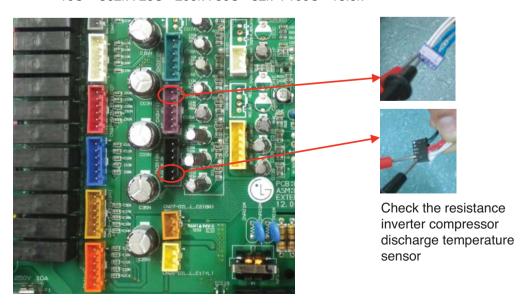

Error No.	Error Type	Error Point	Main Reasons
34*		Error happens	 Defect of high pressure sensor Defect of indoor or outdoor unit fan Deformation because of damage of refrigerant pipe
Master 341 Slave1 342 Slave2 343 Slave3 344	Over-increase of discharge pressure of compressor	because of 3 times successive compres- sor off due to over- increase of high pres- sure by high pressure sensor	4. Over-charged refrigerant 5. Defective indoor / outdoor unit EEV 6. When blocked - Outdoor unit is blocked during cooling - Indoor unit filter is blocked during heating 7. SVC valve is clogged 8. PCB defect of outdoor unit 10. Indoor unit pipe temperature sensor defect

Error No.	Error Type	Error Point	Main Reasons
35*		Error happens	Defective low pressure sensor Defective outdoor/indoor unit fan Refrigerant shortage/leakage
Master 351 Slave1 352 Slave2 353 Slave3 354	Excessive drop of discharge pressure of compressor	because of 3 times successive compres- sor off due to exces- sive drop of low pres- sure by the low pres- sure sensor	4. Deformation because of damage of refrigerant pipe 5. Defective indoor / outdoor unit EEV 6. Covering / clogging (outdoor unit covering during the cooling mode/ indoor unit filter clogging during heating mode) 7. SVC valve clogging 8. Defective outdoor unit PCB 9. Defective indoor unit pipe sensor

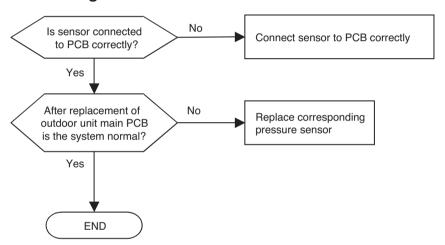
Error No.	Error Type	Error Point	Main Reasons
40*			
Master 401			
Slave1 402	Inverter compressor CT sensor error	Micom input voltage isn't within 2.5V ±0.3V at initial	Input voltage abnormal (R-N) ODU Comp PCB damage
Slave2 403	Sensor enor	state of power supply	(CT sensing part)
Slave3 404			


* Measuring input voltage

* Comp PCB assembly

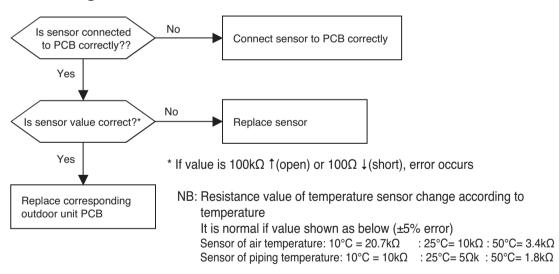


Error No.	Error Type	Error Point	Main Reasons
41* (Inverter1) Master 411 Slave1 412 Slave2 413 Slave3 414	Compressor1 dis- charge pipe tempera- ture sensor error	Sensor measurement value is abnormal (Open/Short)	Defective connection of the compressor1 discharge pipe temperature sensor Defective discharge pipe compressor sensor of the compressor1 (open/short) Defective outdoor PCB
47* (Inverter2) Master 471 Slave1 472 Slave2 473 Slave3 474	Compressor2 dis- charge pipe tempera- ture sensor error	Sensor measurement value is abnormal (Open/Short)	Defective connection of the compressor1 discharge pipe temperature sensor Defective discharge pipe compressor sensor of the compressor1 (open/short) Defective outdoor PCB

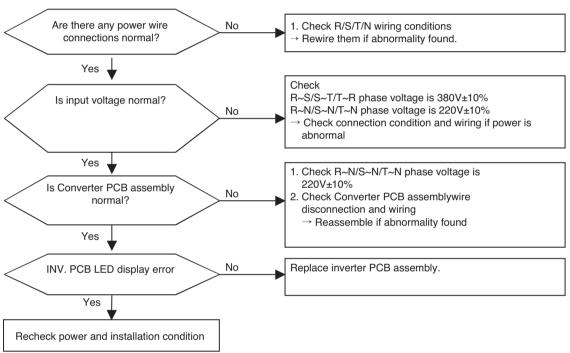


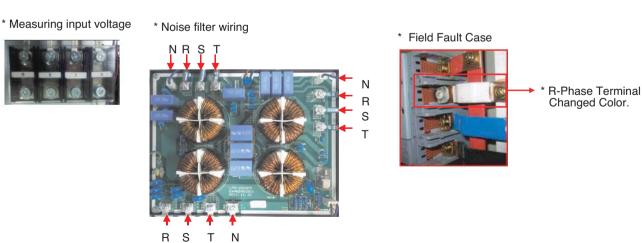
^{*} Error is generated if the resistance is more than 5M(open) and less than 2k (short)

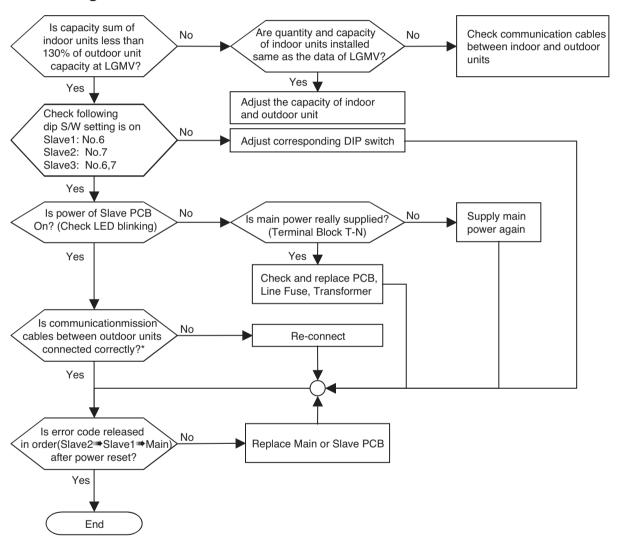
Note: Standard values of resistance of sensors at different temperatures (5% variation) 10C = 362k : 25C = 200k : 50C = 82k : 100C = 18.5k


Error No.	Error Type	Error Point	Main Reasons
42* Master 421 Slave1 422 Slave2 423 Slave3 424	Sensor error of low pressure	Abnormal value of sensor (Open/Short)	Bad connection of low pressure connector Defect of low pressure connector (Open/Short) Defect of outdoor PCB
43* Master 431 Slave1 432 Slave2 433 Slave3 434	Sensor error of high pressure	Abnormal value of sensor (Open/Short)	Bad connection of high pressure connector Defect of high pressure connector (Open/Short) Defect of outdoor PCB

Pressure sensor connector

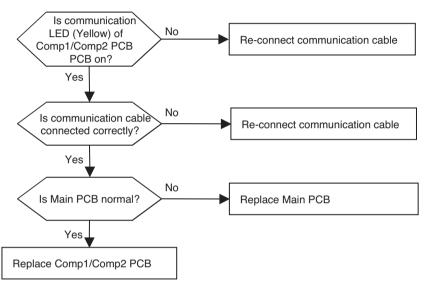



Error No.	Error Type	Error Point	Main Reasons
44* Master 441 Slave1 442 Slave2 443 Slave3 444	Sensor error of outdoor air temperature	Abnormal value of sensor (Open/Short)	Bad connection of air temperature connector Defect of air temperature connector(Open/Short) Defect of outdoor PCB
45* Master 451 Slave1 452 Slave2 453 Slave3 454	Piping temperature sensor error of heat exchanger in master & slave out- door unit heat exchanger (A,B)	Abnormal value of sensor (Open/Short)	 Bad connection of air temperature connector Defect of air temperature connector(Open/Short) Defect of outdoor PCB
46* Master 461 Slave1 462 Slave2 463 Slave3 464	Compressor suction temperature sensor error	Abnormal value of sensor (Open/Short)	Bad connection of air temperature connector Defect of air temperature connector(Open/Short) Defect of outdoor PCB
49* Master 491 Slave1 492 Slave2 493 Slave3 494	Outdoor Unit IPM Temperature Sensor Fault	Outdoor Unit IPM Temperature Sensor Open or Short	Bad connection of air temperature connector Defect of air temperature connector(Open/Short) Defect of outdoor PCB

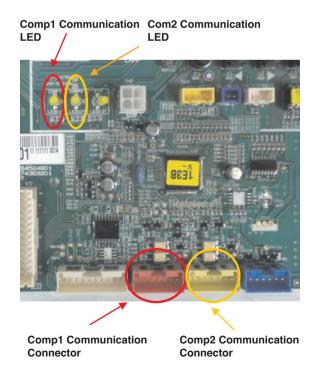

Error No.	Error Type	Error Point	Main Reasons
153* Master 1531 Slave1 1532 Slave2 1533 Slave3 1534	Outdoor Unit Upper Heat Exchanger Temperature Sensor Fault	Outdoor Unit Upper Heat Exchanger Temperature Sensor open or short	Temperature Sensor Connecting Fault Temperature Sensor(Open/Short) Main PCB Fault
154* Master 1541 Slave1 1542 Slave2 1543 Slave3 1544	Outdoor Unit Low Heat Exchanger Temperature Sensor Fault	Outdoor Unit Low Heat Exchanger Temperature Sensor open or short	Temperature Sensor Connecting Fault Temperature Sensor(Open/Short) Main PCB Fault

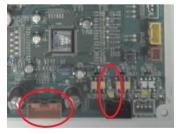
Error No.	Error Type	Error Point	Main Reasons
50*			
Master 501			1. Input Voltage abnormal (R,S,T,N)
Slave1 502	ODU 3phase power omission error	Omitting one or more of R,S,T input power	Check power Line connection condition Converter PCB damage
Slave2 503			Converter PCB input current sensor fault
Slave3 504			

Error No.	Error Type	Error Point	Main Reasons
51* Master 511	Over-Capacity (Sum of indoor unit capaci- ty is more than outdoor capacity)	Sum of indoor unit capacity exceed outdoor unit capacity specification	 1. 130% more than outdoor unit rated capacity 2. Wrong connection of communication cable/piping 3. Control error of slave outdoor unit Dip switch 4. Power supply defect of slave unit PCB 5. Defect of outdoor unit PCB



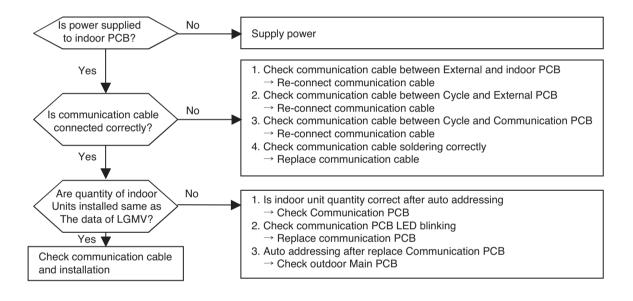
^{*} In order to check communication cables between outdoor units, check in order as below : PCB connectors


→ terminal block


→ communication cables

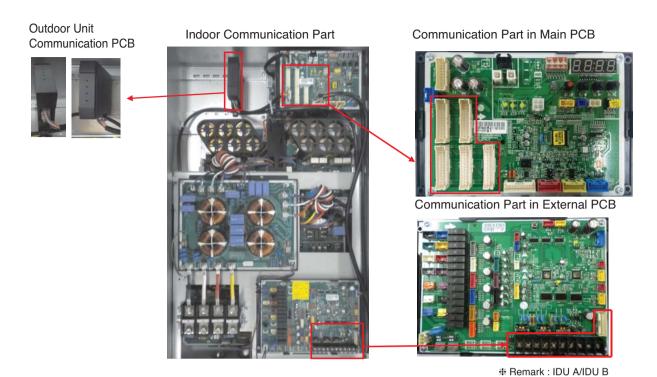
Error No.	Error Type	Error Point	Main Reasons
52* Master 521 Slave1 522 Slave2 523 Slave3 524	Communication error between (Comp1/Comp2 PCB → Main PCB)	Main PCB of Master unit of Master unit can't receive signal from Comp1/Comp2 controller	Power cable or communication cable is not connected Defect of outdoor Main PCB or Comp1/Comp2 PCB

* The method of checking Main PCB and Comp1/Comp2 PCB (If normal, communication LED blinks)



Communication Connector & LED in Comp1 PCB

Communication Connector & LED in Comp2 PCB

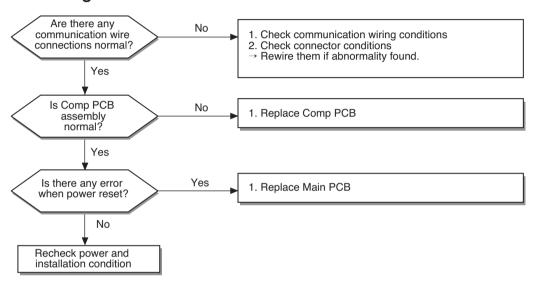

Error No.	Error Type	Error Point	Main Reasons
53* Master 531	Communication error (Indoor unit → Main PCB)	In case Main PCB can't receive signal from indoor unit	Communication cables are not connected between External PCB and indoor PCB Communication cables are not connected between Main PCB and External PCB Communication cables are not connected between Main PCB and Communication PCB Communication cables are short/open Indoor PCB power off Defect of outdoor Cycle/Communication/indoor PCB Communication wire connection fault

In case of CH53, almost happened with CH05, the indoor units not operated actually are normal so check with same method of CH05. and additionally check as shown as below and above flow chart

- Although the quantity of indoor units installed is same as LGMV data there may be a few indoor units with which the number of communication is not increased with LGMV
- Although the quantity of indoor units installed is not same as LGMV data, and if communication of the indoor unit displayed at LGMV is done well then the indoor unit suspected to have some problem (and is not appear at LGMV) may have following problems
- ① wrong connection of communication cable or power cable
- 2 fault of power / PCB / communication cable
- 3 duplication of indoor unit number
- · If communication is not doing well wholly then the Auto Addressing is not done
- The case that CH53 appear at indoor unit also Auto Addressing is not done so indoor unit address may be duplicated
- * After replacement of indoor unit PCB, Auto Addressing should be done, if central controller is installed then the central control address also should be input.

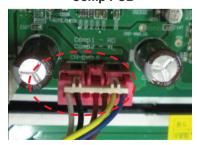
 In case that only communication PCB is replaced above process is not needed

Wiring Fault Case



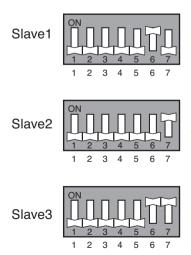
Indoor Unit Communication PCB

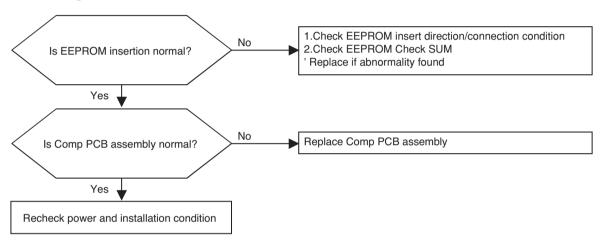
* 1 time/10 sec Turn on/off

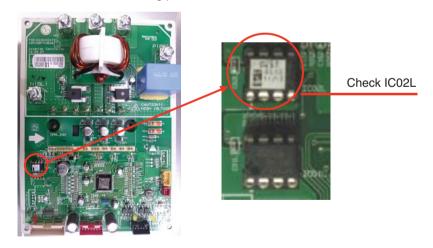

Error No.	Error Type	Error Point	Main Reasons
57* Master 571 Slave1 572 Slave2 573 Slave3 574	Communication error : Main PCB> Comp PCB	Failing to receive inverter signal at main PCB of Outdoor Unit	Bad Connection Between Comp PCB and Comp PCB Communication Wire Noise Effect ODU Main PCB Damage ODU Main PCB Damage

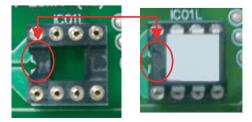
Main PCB


Comp PCB

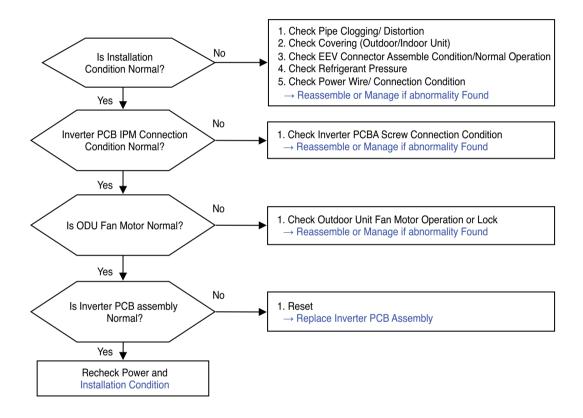

C/Box Bottom


Error No.	Error Type	Error Point	Main Reasons
59* Master 591 Slave1 592 Slave2 593 Slave3 594	Series Installation Error	Series Installation of Slave Outdoor Unit Larger Than Master Capacity	1. Dip Switch Setting Error


* Dip Switch Setting


Error No.	Error Type	Error Point	Main Reasons
60* Master 601 Slave1 602 Slave2 603 Slave3 604	Comp PCB EEP- ROM error	EEPROM Access error and Check SUM error	 EEPROM contact defect/wrong insertion Different EEPROM Version ODU Comp PCB assembly damage

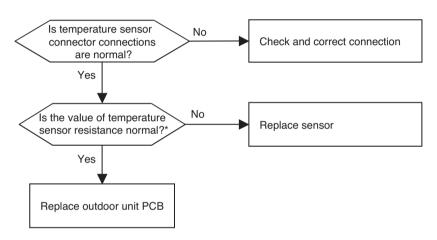
* Inverter EEPROM inserting point



* Right inserting direction of inverter EEPROM

* Note : Replace after power off

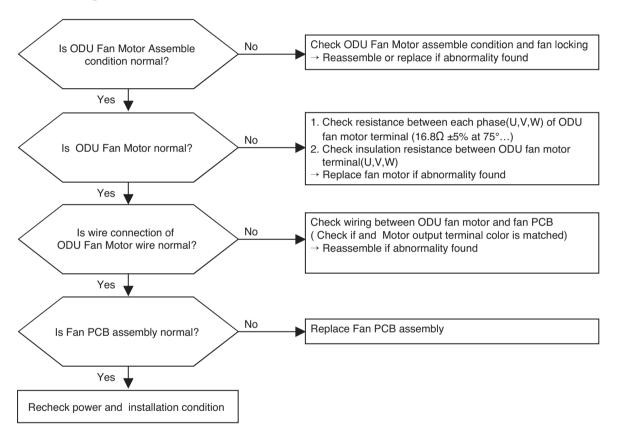
Error No.	Error Type	Error Point	Main Reasons
62* Master 621 Slave1 622 Slave2 623 Slave3 624	Inverter PCB Heatsink Temperature High	Heatsink Temperature is Over 90°C	Inverter PCBA IPM Connection Condition Abnormal Outdoor Unit Fan Motor Operation Abnormal Outdoor Unit Inverter PCB Assembly Defect Overload Operation (Pipe Clogging/ Covering/EEV Defect/Ref. Overcharge)



■ Check Inverter PCB Screw Connection Condition

Check Screw Connection Condition

Error No.	Error Type	Error Point	Main Reasons
65* Master 651 Slave1 652 Slave2 653 Slave3 654	Outdoor unit liquid pipe (condenser) tem- perature sensor error		Defective temperature sensor connection Defective temperature sensor (Open / Short) Defective outdoor unit PCB

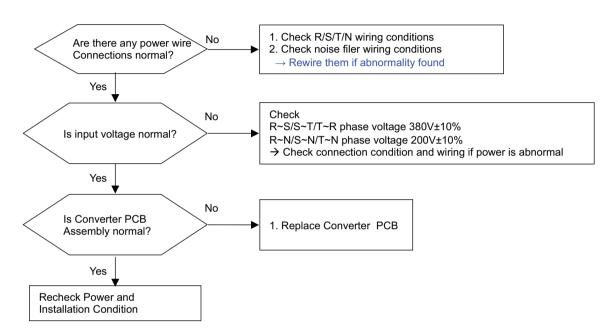


^{*} Sensor resistance 100 k Ω over (open) or 100 Ω below (short) will generate error

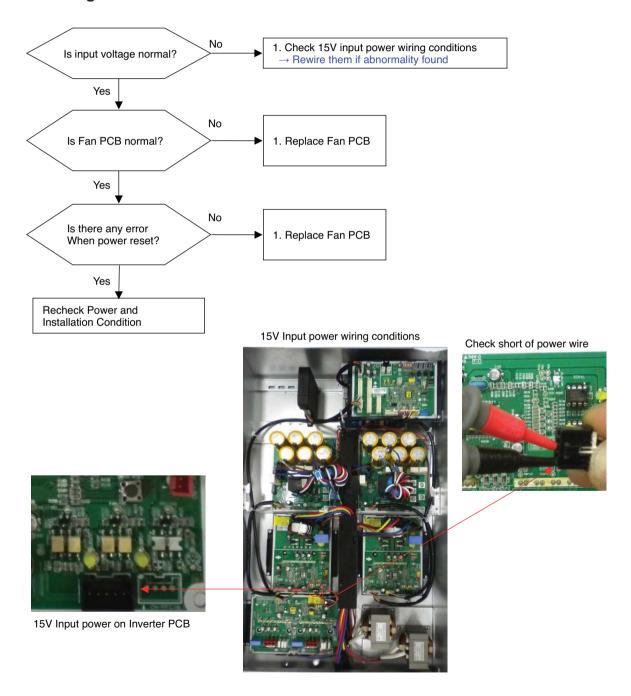
Note: Temperate sensor resistance vary with temperature, So compare temperature sensor resistance value according to outdoor unit temperature by referring below table (±5% tolerance)

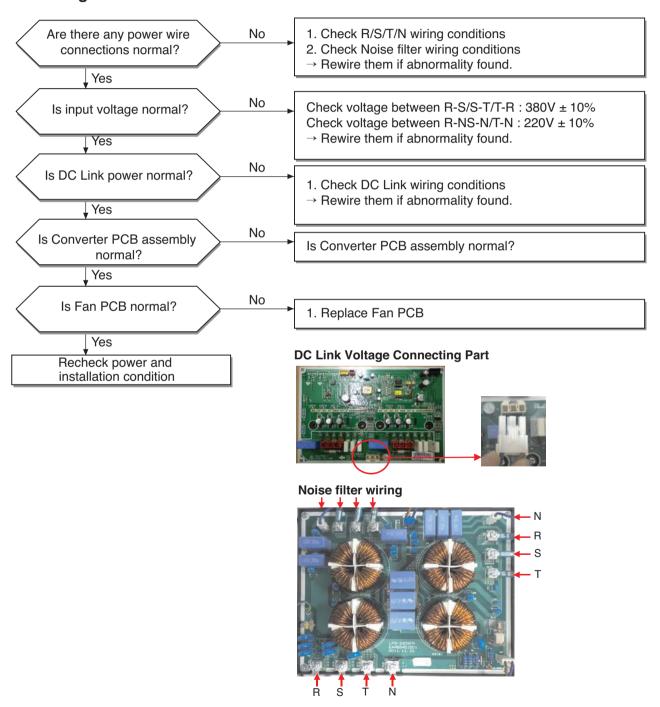
Air temperature sensor: $10^{\circ}C$ = $20.7k\Omega$: $25^{\circ}C$ = $10k\Omega$: $50^{\circ}C$ = $3.4k\Omega$ Pipe temperature sensor: $10^{\circ}C$ = $10k\Omega$: $25^{\circ}C$ = $5k\Omega$: $50^{\circ}C$ = $1.8k\Omega$

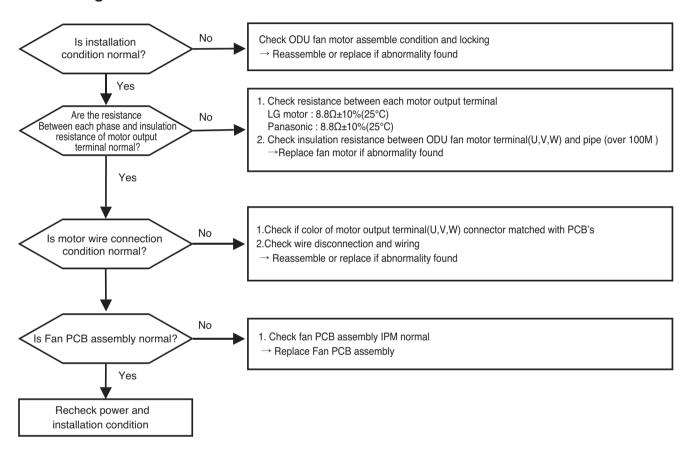
Error No.	Error Type	Error Point	Main Reasons
67* Master 671 Slave1 672 Slave2 673 Slave3 674	Fan Lock Error	Fan RPM is 10RPM or less for 5 sec. when ODU fan starts or 40 RPM or less after fan starting.	 Fan motor defect / assembly condition abnormal Wrong connection of fan motor connector (U,V,W output) Reversing rotation after RPM target apply Fan PCB assembly defect Fan lock by Heavy Snowfall.


* Fan Motor resistance measuring between each phase

Error No.	Error Type	Error Point	Main Reasons
71* Master 711 Slave1 712 Slave2 713 Slave3 714	Converter CT Sensor Error	Micom input voltage isn't within 2.5V±0.3V at initial state of power supply	Input Voltage is abnormal (R-N) ODU Converter PCB damage (CT sensing part)


* Measuring input voltage

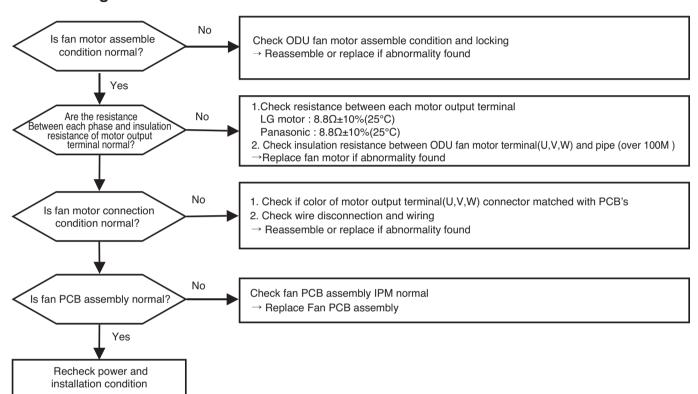

* Converter PCB assembly


Error No.	Error Type	Error Point	Main Reasons
75* Master Slave1 Slave2 Slave3	Fan CT Sensor Error		Input Voltage is abnormal (not 15V) Fan PCB assembly defect Power wire open and connecting fault Inverter PCB assembly defect

Error No.	Error Type	Error Point	Main Reasons
76* Master 761 Slave1 762 Slave2 763 Slave3 764	Fan DC Link High Voltage Error	Fan PCB DC link voltage supplied over 780V	Input voltage abnormal(R,S,T,N) Fan PCB assembly defect Power wire connecting fault

Error No.	Error Type	Error Point	Main Reasons
77* Master 771 Slave1 772 Slave2 773 Slave3 774	Fan Over Current Error	Output current is over 5A for 40ms	 Overload operation Fan Motor defect Fan PCB assembly defect Fan Motor connector insert defect Condenser icing or blocking

Measuring fan motor phase resistance

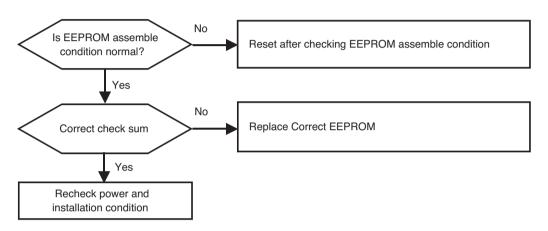


Fan right(2)

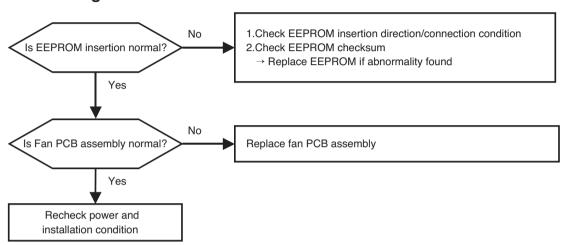
Error No.	Error Type	Error Point	Main Reasons
79* Master 791 Slave1 792 Slave2 793 Slave3 794	Elloi	Fan Motor initial starting failure	1.Fan motor defect/ assemble condition abnormal 2.Fan motor connector misconnection(U,V,W ouput) 3.Fan PCB defect

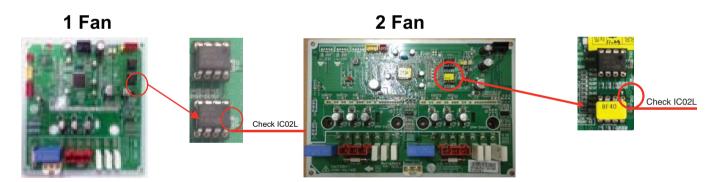
Measuring fan motor phase resistance

Measuring insulation resistance between fan terminal & chassis



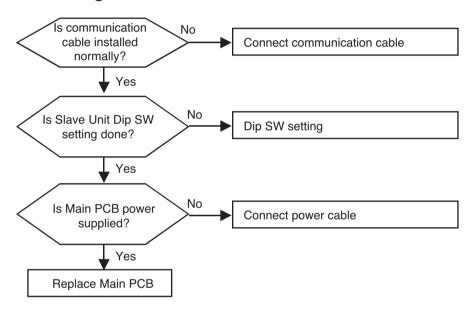
Error No.	Error Type	Error Point	Main Reasons
86* Master 861 Slave1 862 Slave2 863 Slave3 864		EEPROM Access Error	No EEPROM EEPROM wrong insertion


EEPROM Insertion

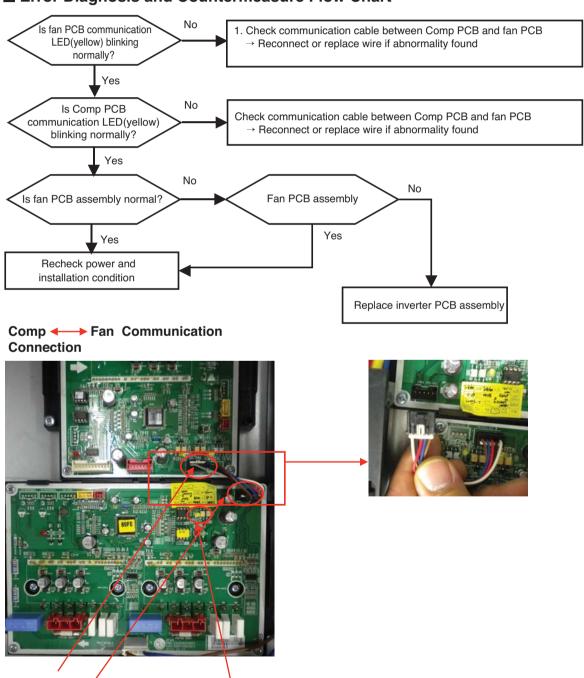


^{*} Note : Replace after power off

Error No.	Error Type	Error Point	Main Reasons
87* Master 871 Slave1 872 Slave2 873 Slave3 874	Fan PCB EEPROM Error	Error occurs when checking the EEPROM checksum as initializing after power is supplied	1.EEPROM bad contact/wrong insertion 2.EEPROM Version is different 3.ODU fan PCB assembly damage

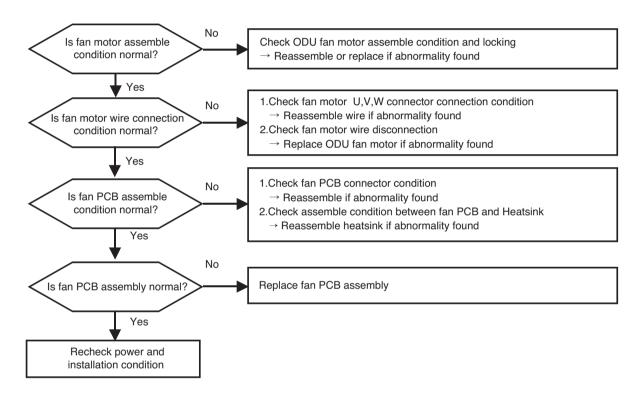


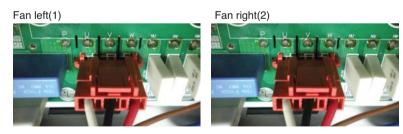
Inverter EEPROM insertion direction



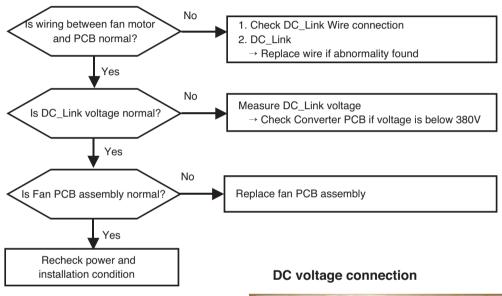
* Note: Replace after power off

Erre	or No.	Error Type	Error Point	Main Reasons
M; 1 SI 1 SI 1 SI	04* aster 041 ave1 042 ave2 043 ave3 044	Communication Error Between Outdoors	Master displays ODU number which is not communicated. Slave displays own error number	1.Loose connection of power cable/ communication cable, (Open/Short) 2.Defect of each outdoor unit PCB

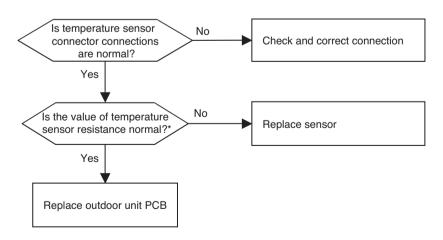

Error No.	Error Type	Error Point	Main Reasons
105* Master 1051 Slave1 1052 Slave2 1053 Slave3 1054	Communication error (Fan PCB ↔ Comp PCB)	Fan controller didn't receive signal from Comp PCB	 Wrong connection between Comp and Fan PCB Fan PCB power not supplied ODU Comp/Fan PCB defect


Communication LED

Communication Connecter


Error No.	Error Type	Error Point	Main Reasons
106 * Master 1061 Slave2 1062 Slave3 1064	ODU Fan PCB IPM Fault	IPM protection circuit activation (over current)	Overload operation (Pipe clogging/Covering/EEV defect/Ref. overcharge ODU fan motor assemble condition abnormal (Coil disconnection/Short/Insulation damage) Fan PCB assembly defect

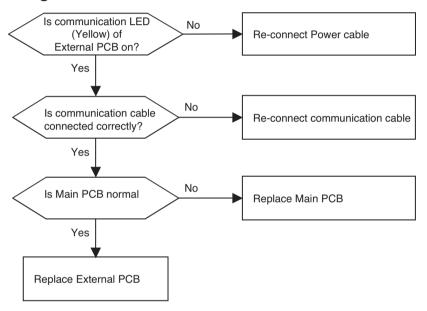
Fan Motor Wire connection


Error No.	Error Type	Error Point	Main Reasons
107 * Master 1071 Slave2 1072 Slave3 1074	Fan DC Link Low Voltage Error	Fan PCB DC link voltage supplied below 380V	 Wrong wiring between Converter PCB and Fan PCB Fan PCB assembly defect Reactor terminal contact defect DC link terminal wiring/contact defect Bridge diode defect

CALITORI VA. AAI

DC Volt connected

Error No.	Error Type	Error Point	Main Reasons
113* Master 1131 Slave1 1132 Slave2 1133 Slave3 1134	Outdoor unit liquid pipe (condenser) tem- perature sensor error		Defective temperature sensor connection Defective temperature sensor (Open / Short) Defective outdoor unit PCB
114* Master 1141 Slave1 1142 Slave2 1143 Slave3 1144	Outdoor Unit Subcooling Inlet Temperature Sensor Error	Abnormal sensor resistance value (Open/Short)	Defective temperature sensor connection Defective temperature sensor (Open/Short) Defective outdoor PCB
115* Master 1151 Slave1 1152 Slave2 1153 Slave3 1154	Outdoor Unit Subcooling Outlet Temperature Sensor Error	Abnormal sensor resistance value (Open/Short)	Defective temperature sensor connection Defective temperature sensor (Open/Short) Defective outdoor PCB



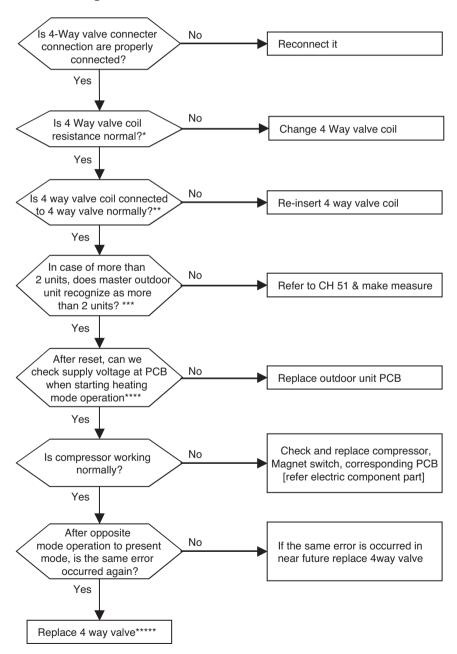
^{*} Sensor resistance 100 k Ω over (open) or 100 Ω below (short) will generate error

Note: Temperate sensor resistance vary with temperature, So compare temperature sensor resistance value according to outdoor unit temperature by referring below table (±5% tolerance)

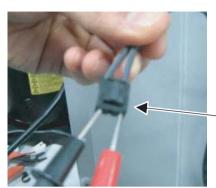
Air temperature sensor: $10^{\circ}\text{C} = 20.7\text{k}\Omega$: $25^{\circ}\text{C} = 10\text{k}\Omega$: $50^{\circ}\text{C} = 3.4\text{k}\Omega$ Pipe temperature sensor: $10^{\circ}\text{C} = 10\text{k}\Omega$: $25^{\circ}\text{C} = 5\text{k}\Omega$: $50^{\circ}\text{C} = 1.8\text{k}\Omega$

Error No.	Error Type	Error Point	Main Reasons
145* Master 1451 Slave1 1452 Slave2 1453 Slave3 1454	Communication Error between (Main PCB → External PCB)	Cycle controller of Master unit of Master unit can't receive signal from External controller	Power cable or communication cable is not connected Defect of outdoor Cycle/External PCB

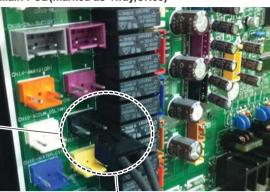
* The Method of checking Main PCB and External PCB (If normal, communication LED blinks)



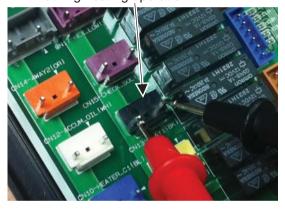
External Communication Connector


Communication Connector & LED in Main PCB

Communication Connector & LED in External PCB


Error No.	Error Type	Error Point	Main Reasons
151* Master 1511	Function error of outdoor 4way (reversing valve)	Function error of 4way (reversing valve) in Main or Slave outdoor units	Wrong operation of 4way valve because of sludge etc. inflow No pressure difference because of compressor fault Wrong installation of In/outdoor common pipe Defect of 4way valve

* Measure the resistance of 4way valve


Location of 4way valve connector on Main PCB(marked as 4way,CN09)

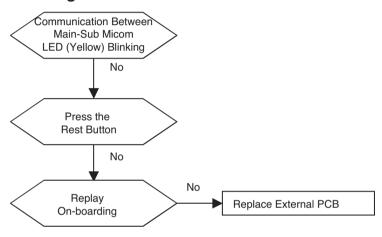
** Confirm the 4way valve coil is inserted to the end

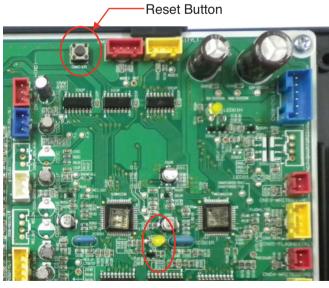
**** Check the output voltage of terminal socket during heating operation

*** When power is supplied in order as follow

(Slave2 → Slave1 → Mater)

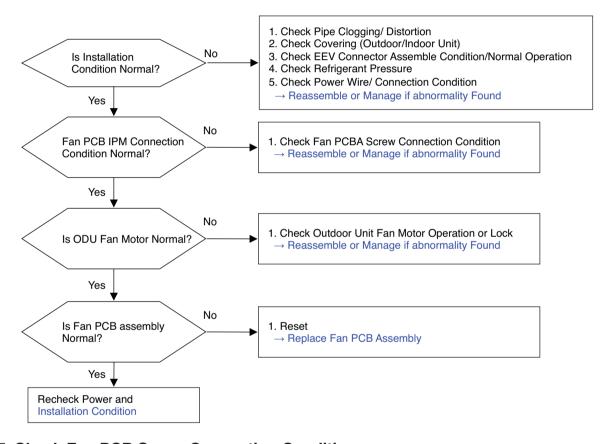
ODU information is displayed one after the other at main PCB 7-segment


- 1. Model ID
 - → 8HP: 8, 10HP: 10, 12HP: 12, 14HP: 14, 16HP: 16, 18HP: 18, 20HP: 20
- 2. Total Capacity
 - → Displayed with HP
- 3. ODU Type
 - → Cooling only :1
 - → Heat pump :2
- 4. Power type
 - → 380V : 38
- 5. Model type
 - → LTE4:1
 - → LTS4:2


***** Checking method for outdoor unit of 3unit system

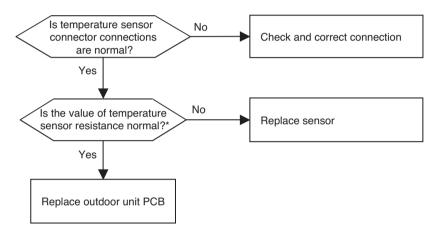
(Master + Slave1 + Slave2)

- ① Close all the SVC valves of high / low pressure
- 2 Operate system
- ③ Check the difference of high and low pressure with LGMV for each unit (Master, Slave1, Slave2)
- ④ If there is a unit in which the difference is not increased then the 4way valve of that unit is defective


Error No.	Error Type	Error Point	Main Reasons
182* Master 1821 Slave1 1822 Slave2 1823 Slave3 1824		Failure Receiving Signal Between Main and Sub Micom	Failure Receiving Signal Between Main and Sub Micom

Communication LED
Between Main and Sub Micom

Error No.	Error Type	Error Point	Main Reasons
193* Master 1931 Slave1 1932 Slave2 1933 Slave3 1934	Fan PCB Heatsink Temperature High	Heatsink Temperature is Over 90°C	Fan PCBA IPM Connection Condition Abnormal Outdoor Unit Fan Motor Operation Abnormal Outdoor Unit Fan PCB Assembly Defect Overload Operation (Pipe Clogging/ Covering/EEV Defect/Ref. Overcharge)



■ Check Fan PCB Screw Connection Condition

Check Screw Connection Condition

Error No.	Error Type	Error Point	Main Reasons
194* Master 1941 Slave1 1942 Slave2 1943 Slave3 1944	Outdoor unit Fan PCB heatsink temperature sensor error	Outdoor unit Fan PCB heatsink temperature sensor error	Defective temperature sensor connection Defective temperature sensor (Open / Short) Defective outdoor unit PCB

^{*} Sensor resistance 100 k Ω over (open) or 100 Ω below (short) will generate error

Note: Temperate sensor resistance vary with temperature, So compare temperature sensor resistance value according to outdoor unit temperature by referring below table (±5% tolerance)

Air temperature sensor: $10^{\circ}C$ = $20.7k\Omega$: $25^{\circ}C$ = $10k\Omega$: $50^{\circ}C$ = $3.4k\Omega$ Pipe temperature sensor: $10^{\circ}C$ = $10k\Omega$: $25^{\circ}C$ = $5k\Omega$: $50^{\circ}C$ = $1.8k\Omega$

Error No.	Error type	Error point	Main reasons
201C#HR	HR unit liquid pipe temperature sensor error	Abnormal value of sensor measurement (Open / Short)	 Defective temperature sensor connection Defective temperature sensor (Open/Short) Defective outdoor unit PCB

Error No.	Error type	Error point	Main reasons
202C#HR	HR unit Sub-cooling inlet pipe temperature sensor error	Abnormal value of sensor measurement(Open / Short)	 Defective temperature sensor connection Defective temperature sensor (Open/Short) Defective outdoor unit PCB

Error No.	Error type	Error point	Main reasons
203C#HR	HR unit Sub-cooling discharge pipe temperature sensor error	Abnormal value of sensor measurement(Open / Short)	Defective temperature sensor connection Defective temperature sensor (Open/Short) Defective outdoor unit PCB

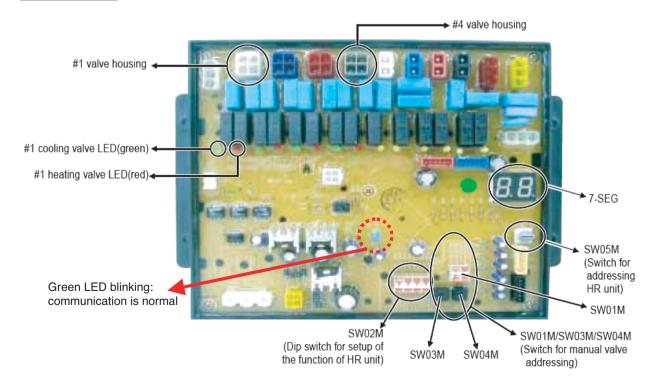
- 1) Check connection condition of temperature sensor and lead cable
- 2) Is value of temperature sensor normal? If not replace sensor
 - Piping temperature sensor : $10^{\circ}\text{C}(50^{\circ}\text{F}) = 10\text{k}\Omega$: $25^{\circ}\text{C}(77^{\circ}\text{F}) = 5\text{k}\Omega$: $50^{\circ}\text{C}(122^{\circ}\text{F}) = 1.8\text{k}\Omega$
- 3) If connection of sensor and value is correct, replace outdoor unit PCB

■ HR unit error display No.

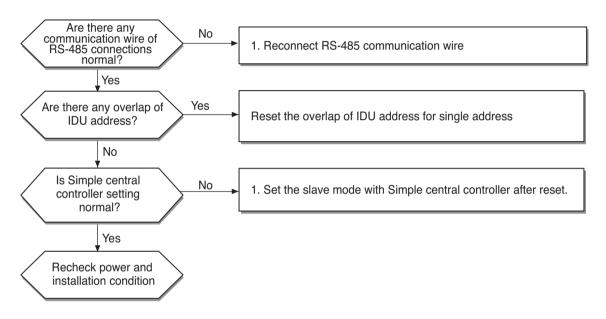
HR Unit	HR #1	HR #2	HR #3	HR #4	HR #5	HR #6	HR #7	HR #8	HR #9	HR #10	HR #11	HR #12	HR #13	HR #14	HR #15	HR#16
Error display	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16

■ Example of HR unit error display.

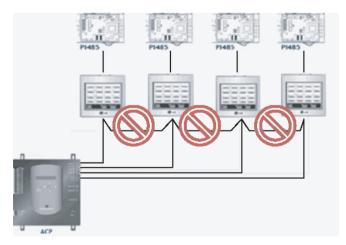
#16 HR unit Sub-cooling inlet pipe temperature sensor error 200 → C16 (Repeat)


C: HR unit

#: HR unit Nuber


Error No.	Error type	Error point	Main reasons
204C#HR	Transmission error between the HR unit and outdoor unit	Transmission error between the HR unit and outdoor unit	Defective connection in HR unit power supply and communication connection Wrong setting of the HR unit rotary switch and dip switch Defective HR unit PCB

- 1) Check connection between power cables and communication cables, check communication green LED blink of HR unit PCB
- 2) If communication green LED blink of HR unit PCB is normal, check setting of rotary switch of HR unit and dip switch(Refer to CH200),
 - Reset power of outdoor and HR unit
 - (If communication error of HR unit occurs, it can't be released until reset of outdoor power)
- 3) If communication green LED blink of HR unit PCB is abnormal(not blinking, just on), check communication condition of total indoor units(Refer to CH05)
 If communication green LED blink of HR unit PCB is abnormal(not blinking, just on) even if communication condition is normal, replace HR unit PCB
- [NB] If Indoor units/communication cables of HR unit and cables of power 220V has been changed each other, communication parts and indoor will be burnt


HR Unit PCB

Error No.	Error Type	Error Point	Main Reasons
242* Master 2421	Network Error	Network error of central controller	RS-485 communication wiring defect Communication defect between remote controller and indoor unit RS-485 dip switch setting error Indoor unit addressing ssetting error on central controller

<RS-485 communication wire miss connection>

P/NO : MFL67369012 August, 2013